IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 8 August 2022, accepted 31 August 2022, date of publication 6 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204814

== RESEARCH ARTICLE

CIRCUIT: A JavaScript Memory Heap-Based
Approach for Precisely Detecting Cryptojacking
Websites

HYUNJI HONG*™, SEUNGHOON WOO*~, SUNGHAN PARK*,
JEONGWOOK LEE, AND HEEJO LEE *, (Member, IEEE)

Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Heejo Lee (heejo@korea.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) by the
Korean Government through the Development of Automated Vulnerability Discovery Technologies for Blockchain Platform Security
under Grant 2019-0-01697, in part by the Development of Software Bill of Materials (SBOM) Technologies for Securing Software Supply

Chains under Grant 2022-0-00277, in part by the Convergence Security Core Talent Training Business under Grant 2022-0-01198, and in
part by the ICT Creative Consilience Program under Grant IITP-2022-2020-0-01819.

*Hyunji Hong, Seunghoon Woo, and Sunghan Park contributed equally to this work.

ABSTRACT Cryptojacking is often used by attackers as a means of gaining profits by exploiting users’
resources without their consent, despite the anticipated positive effect of browser-based cryptomining.
Previous approaches have attempted to detect cryptojacking websites, but they have the following limitations:
(1) they failed to detect several cryptojacking websites either because of their evasion techniques or because
they cannot detect JavaScript-based cryptojacking and (2) they yielded several false alarms by focusing only
on limited characteristics of cryptojacking, such as counting computer resources. In this paper, we propose
CIRCUIT, a precise approach for detecting cryptojacking websites. We primarily focuse on the JavaScript
memory heap, which is resilient to script code obfuscation and provides information about the objects
declared in the script code and their reference relations. We then extract a reference flow that can represent
the script code behavior of the website from the JavaScript memory heap. Hence, CIRCUIT determines
that a website is running cryptojacking if it contains a reference flow for cryptojacking. In our experiments,
we found 1,813 real-world cryptojacking websites among 300K popular websites. Moreover, we provided
new insights into cryptojacking by modeling the identified evasion techniques and considering the fact that
characteristics of cryptojacking websites now appear on normal websites as well.

INDEX TERMS Browser security, web security, cryptojacking.

I. INTRODUCTION

Cryptojacking is a well-known cyberattack that applies vic-
tims’ computer resources (e.g., CPU and memory) for cryp-
tocurrency mining without the consent of the victims. The
cryptocurrency that is generated during the mining process
can be hijacked by attackers for profit. Previously, crypto-
jacking was executed by inducing users to execute malicious
programs, similar to existing malicious attacks, e.g., trojan
and ransomware attacks. Recently, however, the more threat-
ening cryptojacking has appeared, which has been imple-
mented based on the modern web environment, and the mali-

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru

95356

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

cious script code of cryptojacking is automatically executed
on the client side when a user visits a cryptojacking website.
Hence, detecting cryptojacking websites and filtering them
out in the web environment is crucial for protecting user
resources. However, the precise detection of cryptojacking
websites is complex and prone to errors. As script code
obfuscation techniques are frequently applied to crypto-
jacking websites, it is increasingly growing more challeng-
ing to detect cryptojacking based on the static analysis
approach. Furthermore, the cryptojacking websites’ charac-
teristics (e.g., running numerous threads or consuming high
resources of victims’ computers) now appear on various
normal websites (e.g., live-streaming websites), thereby com-
plicating the precise detection of cryptojacking websites.

VOLUME 10, 2022

https://orcid.org/0000-0003-0600-606X
https://orcid.org/0000-0002-5455-0804
https://orcid.org/0000-0002-5831-0787
https://orcid.org/0000-0003-1930-9473

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

IEEE Access

Existing cryptojacking detection approaches mainly use
the following four techniques: blacklisting-based [14], [16],
[25], [37], [42], [45], resource monitoring-based [38], [40],
thread count-based [38], [41], and WebAssembly-based tech-
niques [35], [42]. Although they all provide insights into
detecting cryptojacking, they have limitations in terms of
the precise detection of cryptojacking. Blacklisting-based
approaches stored the characteristics appearing on crypto-
jacking websites as blacklists (e.g., domain, script code, and
external server link) and determined a website that contains
the stored blacklists as cryptojacking websites. However,
these approaches failed to detect several cryptojacking web-
sites because they can be easily bypassed by simple evasion
techniques, such as script code obfuscation or a domain gen-
eration algorithm (DGA), which steadily changes the exter-
nal server link. By contrast, resource monitoring-based and
thread count-based approaches, which focus on cryptojacking
requiring several computer resources and threads, respec-
tively, yield numerous false positives because even recent
normal websites, require several threads and high computer
resource consumption (e.g., web-game or streaming sites).
Last, the WebAssembly-based approaches exhibit low detec-
tion coverage because they cannot detect the most common
JavaScript-based cryptojacking websites.

A. OUR APPROACH

In this study, we propose CIRCUIT, a precise approach for
detecting cryptojacking websites. We define a unit called a
reference flow, which represents cryptojacking behavior and
is robust against JavaScript code obfuscation, and use it to
detect cryptojacking websites.

We mainly focus on the JavaScript memory heap of the
websites. The memory heap reveals the declared objects in the
website’s script code and their reference relations. To execute
cryptojacking, a website should run multiple threads using
web workers (see Section II-A). Hence, CIRCUIT extracts
the behavior of each thread separately from the heap graph,
which is called the reference flow. Subsequently, CIRCUIT
extracts all reference flows from known cryptojacking web-
sites, stores them as the signature of cryptojacking, and com-
pares all reference flows of the target website with the stored
cryptojacking signatures. If at least one reference flow of
the target website is similar to the cryptojacking signature,
then the website is identified as a cryptojacking website.
As we focused on the memory heap, CIRCUIT can robustly
detect cryptojacking websites even with an obfuscated script
code. In addition, CIRCUIT can detect cryptojacking web-
sites more precisely than existing approaches by detecting the
reference flow containing the actual cryptojacking behavior
rather than simply focusing on the characteristics of several
threads or high resource consumption, commonly appearing
on normal websites.

B. EVALUATION
For the experiment, we collected over 300K real-world web-
sites, including the Alexa top 100K and Majestic top 200K

VOLUME 10, 2022

websites. Among them, CIRCUIT detected 1,813 cryptojack-
ing websites with cryptojacking behaviors, most of which
used evasion techniques to avoid cryptojacking detection.
CIRCUIT responded flexibly to evasion techniques in four
categories based on the evasion techniques modeled in the
experiment. Furthermore, by analyzing the distribution of
the number of threads of the collected websites, we demon-
strated the limitations of the existing resource monitoring
and thread-count-based approaches and proved the efficiency
of CIRCUIT from the perspective of precise cryptojacking
detection (see Section V).

C. CONTRIBUTIONS
‘We summarize our contributions below:

« We propose CIRCUIT, a precise approach for detecting
cryptojacking websites based on the JavaScript memory
heap. CIRCUIT is robust to evasion techniques applied
to cryptojacking websites to avoid cryptojacking detec-
tion.

« Although evasion techniques were applied to most of the
identified cryptojacking websites, CIRCUIT succeeded
in detecting 1,813 cryptojacking websites from 300K
real-world websites.

« Modeling evasion techniques to avoid cryptojacking
detection allows us to provide new insights into cryp-
tojacking as behaviors previously associated with cryp-
tojacking now appear widely on normal websites.

Il. BACKGROUND AND RELATED WORK

This section describes the background knowledge related to
cryptojacking (Section II-A) and introduces related works on
cryptojacking detection (Section II-B).

A. BACKGROUND AND TERMINOLOGY

1) CRYPTOCURRENCY MINING

Cryptocurrency is a digital asset designed to function as a
medium of exchange. Cryptocurrency mining (cryptomin-
ing) is the process of validating a cryptocurrency transac-
tions. To gain cryptocurrencies (e.g., Bitcoin and Ethereum),
Proof-of-Work (PoW) is performed, which is a blockchain
consensus mechanism. In a nutshell, peers (i.e., miners) in
the PoW blockchain network solve complex mathematical
problems with taxing computational power. The fixed time
(e.g., 10 minutes for Bitcoin) rewards (i.e., cryptocurrency)
a peer who wins the race and mines the block. Mining is
computationally taxing because only the first miner who
solves the problem is rewarded. To strengthen the probabil-
ity of finding a block, miners combine their computational
resources through public mining pools.

2) CRYPTOJACKING

Cryptojacking refers to the malicious behavior that intercepts
all profits arising cryptomining by using the visitors’
resources in a web environment, without their consent.
When visiting a website injected with cryptomining, a user’s

95357

IEEE Access

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

Mining P'ool /@\
Site key A0
Web socket (Wallet ID) Attacker
Authentication

Website

Cryptojacking code

Mining Script Ei
T
— >
Load

FIGURE 1. Overview of cryptojacking process.

computational resources are hijacked to mine cryptocur-
rency. Specifically, the web technology evolution, such as
JavaScript (JS) and WebAssembly (Wasm), makes it easy
to access users’ resources and leverage them in the mining
process; simply inserting the JavaScript code that supports
mining services into the web page can infect website visitors.
Moreover, since the cryptojacking code executes automati-
cally and works as a background on the webpage, visitors
hardly realize that they are infected. Figure 1 shows the
workflow of the cryptojacking process.
Cryptojacking is executed in the following three steps:

1) Executing cryptojacking code on a website. When
a user visits a website, the web browser automat-
ically loads the website code files (e.g., necessary
libraries and external resources) and executes
them. As the cryptocurrency script code was previously
inserted in the website, it is also executed in this step.

2) Participating in a mining pool. The executed cryp-
tojacking code authenticates the visitor’s PC by using
a predefined mining pool. Thereafter, the visitor (i.e.,
victim) is forced to participate in the mining pool,
organized to mine cryptocurrency.

3) Mining and gaining profits. The computer resources
of the victim’s PC mine the cryptocurrency, and then
the mined cryptocurrency is sent to the attacker’s digital
wallet address, which was previously defined in the
cryptojacking code of the website.

Unlike traditional malware, cryptojacking exploits only the
victim’s computer resources; the victim has a minor infection
symptoms, such as slow computer performance or an increase
in power consumption, making it difficult to recognize cryp-
tojacking. Furthermore, since cryptojacking runs in a web
environment, its execution is less restrictive, and various
devices and operating systems may be exposed to crypto-
jacking. Therefore, cryptojacking has attracted attention as
a stable and continuous means of profit for attackers.

3) JAVASCRIPT ENGINE

The workflow of the JavaScript engine, where the cryptojack-
ing code is executed, is shown in Figure 2. The JavaScript
engine first analyzes the syntax errors of the script code, and
if there are no errors, it starts reading the script code from
top to bottom and converts the code into a machine language.
To interpret and execute JavaScript code, two large areas are
required: the memory heap and call stack [3], [19], [21].

95358

Web APIs

JavaScript runtime engine

O o DOM Events
O R I i e ——— T Aax
Memory Heap Call Stack
Task Queue
8 synchronous G Call?ack Call;ack
[Task 1]: Asynchronous Event Loop

FIGURE 2. The workflow of the JavaScript engine. The JavaScript engine
only handles one task at a time stored in the call stack, i.e., single-thread
process.

+ Memory heap. When variables and objects are declared
in the JavaScript code, the JavaScript engine allocates
memory to them and stores the allocated memory infor-
mation in the memory heap.

« Call stack. When the JavaScript engine finds an exe-
cutable syntax in the script code, such as a function call,
it adds the syntax into the call stack and executes the
stored syntax one by one according to the last-in-first-
out (LIFO) format.

If an asynchronous function is executed (e.g., a callback
function), the JavaScript engine calls the web API, which
is provided by the browser. The web API stores an asyn-
chronously executed function in the fask queue. Thereafter,
the event loop [15] checks the status of the call stack and
task queue, and when the call stack becomes empty, the
first callback of the fask queue is put into the call stack and
executed.

4) WEB WORKER

JavaScript has become one of the most popular lan-
guages [9], [10], [33], and the cryptojacking that leverages
it has also been on the rise recently [5]. In JavaScript,
web workers enable multi-threaded processing. Previously,
JavaScript only supported a single-thread process, mean-
ing that JavaScript could only process one task at a time.
Therefore, when a task was performed, the following task
waited until the previous task was completed. If websites
had heavy tasks that could not afford a single thread, they
became unresponsive due to the overhead. To address this
problem, a web worker [30], [31] was introduced to support a
multithread process in JavaScript. As cryptomining requires
a lot of resources to recursively check the validity of several
blocks connected to a cryptocurrency network (i.e., a heavy
task), it is indispensable that browser-based cryptomining is
implemented through a multi-thread process. Consequently,
the appearance of web workers has a significant influence on
making cryptojacking more active.

5) DATA TYPES IN JAVASCRIPT
In JavaScript, data types belong to two categories: primitive
value and reference value [6].

o Primitive value: When primitive values are assigned
to variables, they are stored in fixed sizes in the mem-
ory; therefore, they are stored on the call stack along

VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

IEEE Access

//Case (1): primitive value
var a 100;

var b a;

a = 99;

console.log(b); //100

//Case (2): reference value

var a = { num : 100 };
var b = a;
a.num = 99;

— OOV IAWUN R W~

—_—

console.log (b); //99

Listing 1. Example code showing the difference between primitive and
reference values.

var foo = {foo : "foo"};

var a = Object.create(foo);
var array = [];

var func = function () {
console.log("foo");

Window instanceof Object // True
/+ "Window" refers to the page itself where the script
is currently running */

O 00NN BN —

Listing 2. An example of JavaScript prototype chains.

with the actual values. JavaScript provides the follow-
ing types of primitive values called wrapper objects:
number, string, boolean, null, undefined,
and symbol [1].

+ Reference value: When the variables are not assigned
to wrapper objects, they are used as reference values.
The size of the reference value is not fixed; therefore,
it is stored in the heap along with its location; variables
only have memory addresses instead of values for data.
All data types, except wrapper objects, are contained in
the reference variables (e.g., array, object, and function).

As an example of these two data types, Listing 1 presents
the difference between primitive and reference values.

Case (1) in Listing 1 presents the case when a primitive
variable is copied to a certain variable. Since the value of
the variable is copied, variable b outputs the previous value
of variable a. By contrast, case (2) in Listing 1 presents the
case when a reference variable is copied to a certain variable.
As the reference value stores the address in the memory,
variable b is changed along with the modification of variable
a because values with the same memory address always refer
to the same data; this allocation of memory addresses to
access data is referred to as a reference in JavaScript.

6) PROTOTYPE-BASED LANGUAGE IN JAVASCRIPT

To understand code reuse in JavaScript, we introduce the con-
cept of prototype-based programming language in JavaScript.
As explained in Section II-AS, most variables are objects,
except for those assigned a primitive type. Every object in
JavaScript has a property that has keys and values, and this
property is called a prototype [22], [26]. When creating an
object, it can inherit methods and properties from a par-
ent object in a template format; this is called the prototype
chain [20] (see Listing 2).

VOLUME 10, 2022

TABLE 1. Prototype chains for Listing 2.

#Line Prototype Chain
Line #1

foo — Object.prototype — null
Line #2 a — foo — Object.prototype — null
Line #3 array — Array.prototype — Object.prototype — null
Lines #4 - #6 | func — Function.prototype — Object.prototype — null

Listing 2 presents an instance of the JavaScript code
used to describe the prototype chain, and Table 1 lists
the prototype chains for the corresponding code. As the
basic type of JavaScript is the object, all elements, such
as functions and arrays, are linked to a top-level object,
Object .prototype. The top-level object has null as its
prototype; therefore, the prototype chain ends.

B. RELATED WORK

Several existing approaches detect and prevent threats caused
by cryptojacking. We reviewed four types of existing
approaches: (1) blacklisting-based, (2) resource monitoring-
based, (3) thread count-based, and (4) WebAssembly-based
approaches.

1) BLACKLISTING-BASED APPROACH

These approaches store elements with unique cryptojack-
ing characteristics (e.g., external resources links and script
codes) as keywords in the blacklist and use them to detect
cryptojacking [14], [16], [25], [37], [42], [45]. If the stored
keywords are detected on a website (e.g., if the domain of
a website is the same as a blacklisted domain), the website
is considered as a cryptojacking website. This approach is
useful for detecting cryptojacking when an attacker fetches
and abuses known cryptojacking code.

2) RESOURCE MONITORING-BASED APPROACH

A resource monitoring approach is based on the fact that
cryptojacking is a resource-intensive task [38], [40]. This
method detects a website as a cryptojacking website if the
computer resources (e.g., CPU usage) exceed a predeter-
mined threshold when visiting the website. In particular, this
approach has been highlighted as a new detection mechanism
because it is not affected by script code obfuscation and is
more convenient than a blacklisting-based approach requiring
continuous management of blacklists.

3) THREAD COUNT-BASED APPROACH

As cryptojacking requires continuous mining, a thread with a
separate execution space was created to proceed with min-
ing. Unlike a normal website, the number of threads on a
cryptojacking website is proportional to profitability [38],
[41]. Consequently, several approaches have found a dif-
ference in the number of threads between cryptojacking
and normal websites, and proposed methods can be uti-
lized for cryptojacking detection [41]. This approach detects

95359

IEEE Access

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

cryptojacking more flexibly than blacklisting-based or
resource-monitoring-based approaches.

4) WEBASSEMBLY-BASED APPROACH

Wasm is a binary instruction format that can run in mod-
ern web browsers along with JavaScript [32]. It provides
near-native performance for web applications, and any lan-
guage (e.g., C, C++, and Rust) can be compiled. Owing
to the advantages of Wasm, an increasing number of attack-
ers are using Wasm to employ cryptojacking websites [44].
In light of this, several approaches [35], [42] targeted cryp-
tojacking websites based on Wasm, and proposed detection
methods using static and dynamic features related to Wasm
(e.g., by counting Wasm instructions).

Limitations of Existing Approaches: Existing approaches
provide insights into detecting cryptojacking websites; how-
ever, we confirmed that each has limitations in precisely
detecting cryptojacking websites.

Blacklisting-based approaches have two main limitations.
As this approach is solely dependent on the stored keywords,
keywords related to cryptojacking must be periodically col-
lected; thus, when new cryptojacking appears, it is impossible
to detect until the relevant keyword is stored in the black-
list. Furthermore, attackers can easily bypass blacklist-based
detection by creating keywords that are not included in
the blacklist using obfuscation or DGA. Hong et al. [38]
and Konoth ef al. [42] systematically analyzed cryptojack-
ing. Specifically, Hong et al. [38] determined the life cycle
of cryptojacking websites and the proper blacklist updating
period, and proved that it was not enough to detect crypto-
jacking by relying only on the blacklist. By contrast, resource
monitoring-based approaches have a false-positive problem.
Recently, it is more common to provide extensive work to
the web environment (e.g., real-time video streaming) that
shows high resource usage. Therefore, simply relying on
resource usage monitoring can result in normal websites
with high resource usage being mistaken as cryptojacking
websites. In addition, thread count-based approaches can-
not precisely detect cryptojacking because normal websites
using multiple threads have appeared. Finally, Wasm-based
approaches exhibited low detection coverage; even if several
websites that employed Wasm were malicious, only 0.16%
of the websites used Wasm among the Alexa Top 1 million
websites [44]. As the proportion of Wasm-based websites
is insignificant, JavaScript-based cryptojacking websites
should be included in the scope of detection.

Ill. DESIGN OF CIRCUIT

This section introduces the CIRCUIT methodology, which
focuses on detecting JavaScript-based cryptojacking websites
and is robust against JavaScript code obfuscation. Figure 3
shows the high-level workflow of CIRCUIT.

A. OVERVIEW
CIRCUIT comprises the following two phases: (1) P1 for
generating signatures and (2) P2 for detecting cryptojacking.

95360

P1. Signature generation P2. Cryptojacking detection

INPUT
N

Heap graph Reference flow
m generation extraction Reference flows

Mining sites ——
script code Vulnerable
signatures
A
INPUT Comparei—)
AN RN
Heap graph Reference flow
generation extraction Reference flows

Websites
script code

FIGURE 3. High-level workflow of CIRCUIT.

OUTPUT

Cryptojacking sites

In P1, CIRCUIT first generates a heap graph that shows
the behavior of the script code running on the website to
detect cryptojacking, even if its script codes are obfuscated.
CIRCUIT then extracts reference flows, that refer to the refer-
ence relations between objects in JavaScript. As the reference
flows can denote the call flow of objects, we decided that
the reference flows would represent cryptojacking behaviors.
Therefore, CIRCUIT stores the reference flows of known
cryptojacking websites as cryptojacking signatures. In P2,
CIRCUIT compares the reference flows of the target web-
sites with the signatures. If the reference flow of the target
website resembles that of cryptojacking websites, CIRCUIT
identifies the target website as a cryptojacking website.

Key Idea: CIRCUIT utilizes the fact that script code obfus-
cation does not directly affect the information stored in mem-
ory, and web threads are stored in the memory area as objects.
Thus, it is very flexible for indistinguishable script codes
and can be analyzed by classifying web threads individually.
If a mining-related thread is discovered on a website, it is
identified as a cryptojacking site.

To precisely detect cryptojacking sites, we leveraged two
key observations as follows:

1) Form of cryptojacking code reuse. Cryptojacking
source code is generally provided by vendors through
external links, and attackers utilize it in the form of
third-party libraries [4], [36], [38].

2) Distinguishable behaviors of cryptojacking. To gain
benefits, cryptojacking should perform its own mining
behaviors, distinguishable from normal websites, e.g.,
as joining a mining pool — mining cryptocurrency —
sending rewards to attackers.

These two observations provide the following intuition:
since cryptojacking is utilized in a third-party library form
(i.e., cryptojacking families), the JavaScript call stack and
memory heap are comparable among websites using the same
cryptojacking [41]. Furthermore, each cryptojacking contains
its behavior; therefore, we can use the behavior as the signa-
ture of cryptojacking and detect cryptojacking websites by
analyzing whether a particular website contains the same or
similar behaviors of cryptojacking.

B. SIGNATURE GENERATION (P1)

This section introduces the methodology for heap graph
generation (Section III-B1) and reference flow extraction
(Section I1I-B2).

VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

IEEE Access

Class Foo {
constructor (value) {
this.key = value;

}

1
2
3
4
5
6| var a = var Foo("foo");

Listing 3. Example of a JavaScript code snippet to illustrate the heap
graph generation.

(a) Obfuscated JavaScript code
Var @x3379=[key', foo'];(function(_6x355095, 6x337962){var_6x18bf6c=function(_ox1
14e0e){while(--_0x11l4e0e){_0x355095["push'](_0x355095['shift']());}};_0x18bf

6C(++_0x337962) ; }(_0x3379,0x144)) ;var_ox18bf=Ffunction(_0x355095, 0x337962){_0x355095=_0x355095
0x0;var_ox18bf6c=_0x3379[_0x355095]; return_dx18bf6c; }; classFoo{constructor(_8x39912a){this[_ox
18bf('@x8')]=_0x39912a;}}var a=new Foo(_@x18bf('ex1')); 7

(b) JavaScript Engine
Memory heap

(c) Heap graph

foo key Foo

00000 -

Call Stack

O Allocated memory

FIGURE 4. Overview of heap graph generation.

1) HEAP GRAPH GENERATION

First, CIRCUIT generates a JavaScript memory heap graph
from a website. A node in the graph is a set of all the objects
in the memory heap of the JavaScript engine, where the object
includes special types, such as wrapper objects and window
objects. An edge in a graph is a set of values that expresses the
reference relation between two objects. In other words, it is
a set of values in which a memory address value is allocated
to access the corresponding memory address (e.g., variable
names).

Let us consider the following code snippet as the running
example.

The obfuscated code for Listing 3 is shown in Figure 4 (a).
Even if Listing 3 contains only variable declaration state-
ments, the obfuscated code of Listing 3 is difficult to under-
stand. However, the memory heap contains the declared
object and variable names (see Figure 4 (b)); therefore,
we can identify them via the memory heap. Thus, we only
consider the memory heap of JavaScript.

To obtain the memory heap information from a website,
we take a snapshot of the website when all contents of the
document (e.g., images, scripts, and CSS) are loaded (by load
event [34]). As JavaScript is an interpreted language, mem-
ory is steadily allocated and deallocated while a website is
running. Specifically, the allocated memory is automatically
deallocated when the variables and objects corresponding to
the memory in the source code are no longer required because
of garbage collection (GC) [24]. Fortunately, cryptojacking
has a pattern of executing repetitive tasks within a website
for mining, and thus, the allocated memory is not deallocated
before a user leaves the website; there is no loss of memory
information through GC. Therefore, we decide to take a snap-
shot of the website with all contents of the document loaded.
To extract the memory heap of the websites, we can easily
obtain the objects declared in the website script code and

VOLUME 10, 2022

Multi-thread heap graph
Execution context

Single-thread heap graph
Execution context

% No WebWorker node appears

O Object e Referencing value

Reference flow

FIGURE 5. The illustration of the difference between a single-thread heap
graph and multi-thread heap graph, particularly based on the WebWorker
nodes.

their reference relations by taking heap snapshots using the
JavaScript engine. For instance, the V8 JavaScript engine [29]
provides data in JSON format, and object and reference infor-
mation can be obtained by parsing the corresponding JSON.

Next, as described in Section II-A6, if objects with ref-
erence relations are connected, a heap graph is constructed.
In the running example (Listing 3), “foo” exists in the
string node because it belongs to the wrapper object
as a string type of data. As the variable “key” refers to
the memory address where the value of “foo” is stored, it is
converted to an edge and connects “Foo’. The variable “a”,
created by the constructor function of class “Foo” is a value
that has the memory address for the created “Foo” object,
and therefore “a” is converted into an edge that connects
the node indicating the web page itself and the “Foo” node.
Thus, to access the value “foo” from a web page, we first
access “Foo” node by “a” edge which has the memory
address value of “Foo”, and then access “foo’” node by
a key edge that also has the memory address of “foo™.
Figure 4 depicts the overall flow where Listing 3 is converted
into a heap graph.

The generated heap graph can express the reference rela-
tions between the objects declared on the website; therefore,
we can grasp the passing of all object flows to access a
particular object. Consequently, the heap graph can identify
and display declared variables or objects, even though the
script code of a website is obfuscated.

2) REFERENCE FLOW EXTRACTION

CIRCUIT extracts reference flows from the generated heap
graph. Reference flows are defined as the reference relations
between objects in JavaScript, which denote the call flows of
objects. We first reduce the searching space by focusing on
the existence of a multi-thread. As previously explained in
Section II-A4, running a multi-thread is an essential property
for cryptojacking. Consequently, to determine whether a web-
site runs multiple threads, we confirm whether a web worker
exists in the heap graph of the website. In general, if a website
runs multi-thread, the WebWorker object is contained in the
memory heap, as shown in Figure 5. Subsequently, CIRCUIT
first finds the WebWorker node in the heap graph to deter-
mine whether the website runs multi-thread, and thereafter
CIRCUIT attempts to extract reference flows from the heap
graph.

95361

IEEE Access

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

<script src="https://www.hostingcloud.racing/A8P2.js">
</script>

var a=[‘G8KsSsO0pP8KU’, ‘fWoRw5DCLEjCr ... HDrE4f’];
//The script code of the corresponding ‘A8P2.js’ file

<script>
var miner = new Client.Anonymous(‘<site-key>");
miner.start();

</script>

1
2
3
4
5
6
7
8
9
0

—_

Listing 4. Script code of CoinIMP.

Since the WebWorker object is created through the con-
structor function on a website [30], [31], a value that refers
to the memory address of the WebWorker object must exist,
and this value remains as an unique path that can be accessed
for use on a website. To obtain a reference flow for each web
worker, CIRCUIT defines the execution context [2], which is
an environment for executing the JavaScript code as the start
node and WebWorker object as the end node.

Subsequently, we traverse the heap graph using the
depth-first search (DFS) and collect all the nodes and edges
passing between the execution context and WebWorker
object as the reference flow of each web worker. In the
reference flow, information about the objects declared by
the web worker and the reference relations between various
objects are revealed. In other words, in the reference flow
that directly executes cryptojacking, the object and reference
relation related to the actual mining process are revealed.
Thus, we employ the reference flow to detect cryptojacking
websites.

C. CRYPTOJACKING DETECTION (P2)

Next, CIRCUIT detects cryptojacking websites using the
extracted reference flows.

1) SIGNATURES FOR CRYPTOJACKING WEBSITES
To identify whether the extracted web worker’s reference
flow contains cryptojacking behavior, we first explain the
cryptojacking structure and how it is accessed and executed.
The cryptomining script code has three areas: the head,
body, and tail. The headis a script code area for import-
ing cryptojacking related resources (e.g., objects and vari-
ables) with an external server link. The body is a code area
that declares the necessary functions and objects before the
mining operation is executed on a cryptojacking website.
Finally, the tail is a code area where an object is created
for mininig on the client side, and the mining is executed.
For example, Listing 4 represents a real-world cryptojack-
ing code (i.e., CoinIMP). In this code snippet, lines #l
and #2 belong to the head, 1ine #4 belongs to the body,
and 1ines #8 and #9 belong to the tail. As mentioned in
Section III-A, the cryptojacking code is mainly distributed
in a general third-party form and is executed through the
same script code from each cryptojacking vendor. There-
fore, if the websites utilize the same cryptojacking vendor,
the head, body, and tail of cryptojacking codes will
be similar. As the operations performed by cryptojacking,

95362

Q start/endnode (O) Node —» Edge
BrowserMiner

Worker | Miner Object Window

O worker N verifyTreadna/ ™ \meMinw—O
CoiniMP

Worker dE aH Window

@z @ e @ 2t ©)

worker N verifyTread e/ miner

WebMinePool

Worker object elements Array Miner Window

0-n N clements NI workers N/ miner O

Minero
Worker t object elements Array [Window

O worker N 0N NS clements N _threads N miner O

Crypto-WebMiner

Worker object elements Array Window
O+—+0=0-=-"0
o\ e \ oy
WebMine.cz oy Reconmectin
Worker object elements Array Eyusnteext et Window

WebSocket

0-n N clemens NS CURRENT = context AReconnecting
WORKERS WebSocket
Crypto-Loot
P . system/ . "
Worker object elements Array Context O Object Window
0-n NS eements NS _0x32719/ Y context. NI _remove NS CRLT O

Worker

FIGURE 6. Example of extracted reference flows from known
cryptojacking websites.

particularly the mining operations performed on the body,
remain identifiable in the memory heap, we can use this
information to detect cryptojacking websites, irrespective of
code obfuscation.

Therefore, we collect the cryptomining script code pro-
vided by the cryptojacking vendors. To extract reference
flows from the collected cryptomining script code, we create
an arbitrary website to open a web server inside and embed
the collected script code. We then implement a cryptomin-
ing website using the collected cryptomining script code
by referring to the provided usage document and storing
the heap information of the JavaScript engine created when
the website is executed. Subsequently, we generate the heap
graph from the JavaScript memory heap and then extract
the reference flows from each web worker. The extracted
reference flows for each vendor are indexed by the name
of each vendor. Figure 6 shows examples of the extracted
reference flows from seven known cryptojacking websites.

2) DETECTING CRYPTOJACKING WEBSITES

Finally, CIRCUIT detects cryptojacking websites using
extracted cryptomining reference flows. To confirm that a
target website contains cryptojacking, we extract all reference
flows from the target website and compare every extracted
reference flow to the indexed cryptomining reference flows.
Here, we employ an edit distance algorithm [17] and calculate
the edit distance between all the reference flows obtained
from the target website and all the indexed cryptomining
reference flows. If any pair shows an edit distance below
the predefined threshold (we set 5 as the threshold; see
Section IV-A), CIRCUIT identifies the target website as a

VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

IEEE Access

cryptojacking website. The algorithm that detects cryptojack-
ing websites is presented in Algorithm 1.

Algorithm 1: Algorithm for Detecting cryptojacking
Sites

Input: K, T

// K: known cryptojacking websites,
T: a target website

Output: C

// C: a list of cryptojacking
injected websites

1 procedure DetectingCryptojacking(K, T)
2 C«—g
3 Sk < ExtractingSignature(K)
// A unique set of reference flows
of K
4 for T; in T do
5 St < ExtractingSignature(T;)
// A unique set of reference
flows of T
if S7 == false then
| continue

for tin St do
for k in Sk do
10 if IsSimilar(t, k) then
// Determining T; as the
cryptojacking website
1 C.append(T;)

12 return C

13 procedure ExtractingSignature(S)
14 if IsWebWorker(S) then

15 R« @ // R: Reference flows
16 H <« takeHeapSnapshot(S)
// Take a heap snapshot for
website
17 startNode, workerNode, NodeEdgeList «<—

MemoryHeapGeneration(heap)
// Extract reference flow by
searching the nodes with DFS

18 R.append(extractReferenceFlows(startNode,
workerNode, NodeEdgeList))

19 | return R

20 else

21 | return false

IV. EVALUATIONS AND FINDINGS

In this section, we evaluate CIRCUIT. We first evaluated
the cryptojacking detection results of CIRCUIT using popu-
lar real-world websites. CIRCUIT was tested for its coping
ability with techniques used to evade cryptojacking detec-
tion (e.g., obfuscation). Finally, we introduced findings on

VOLUME 10, 2022

TABLE 2. Summary of the collected websites for our experiment.

Category #Total websites

Alexa top 100K websites 100,000

Majestic top 200K websites 200,000
Alexa category top websites

Adult 500

Arts 500

Business 500

Computers 500

Games 500

Health 500

Home 500

Kids and Teens 500

News 500

Recreation 500

Reference 500

Regional 500

] Total 306,000 |

the detected cryptojacking websites. We ran CIRCUIT on
a machine with Ubuntu 18.04 LTS, 3.8 GHz AMD Ryzen
processor, 32 GB RAM, and 1 TB SSD.

Dataset Collection: The experiment collected real-world
websites from the dataset. Specifically, we decided to collect
popular websites that have greater impacts on several users,
and then confirmed the existence of cryptojacking websites.
We collected 300,000 websites listed in Amazon’s Alexa top
website service [7] and Majestic [28], which provide the
world’s most popular website list for free, and then gathered
top websites in both lists to confirm the distribution of cryp-
tojacking in the overall Internet environment. Furthermore,
to identify the website service field where cryptojacking is
distributed, we also collected an additional Alexa category
top service [8] that indexes websites by category. We col-
lected a list of 6,000 websites, each with 500 of the most
popular rankings for 12 categories. Therefore, we collected
306,000 websites as our dataset to evaluate CIRCUIT (see
Table 2).

Memory Heap Collection: We developed a crawler that
stores the memory heap area of a visited website using
the remote interface [13] and puppeteer [27] functions of
the Chrome browser [12]. This crawler visited the collected
306,000 websites, and after waiting for the website content
to finish loading (i.e., load event), it extracted a snapshot of
the memory heap area of the JavaScript engine. Here, if the
connection time of the website exceeds 30,000 ms or the
website cannot be accessed from the domain name system
(DNS) server, the crawler ignores the website. Therefore, our
crawler collected memory heap areas from 204,773 websites
to evaluate CIRCUIT, and the results are summarized in
Table 3.

A. DETECTION OF CRYPTOJACKING IN THE REAL-WORLD
WEBSITES
1) METHODOLOGY

First, we extracted seven reference flows from the
seven known cryptojacking websites as signatures for

95363

IEEE Access

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

TABLE 3. Summary of the collected memory heap from the website
dataset.

’ Category #Websites #Heap extracted’ Collection date ‘
Alexa top 100K 100,000 82,081 June 28, 2022
Majestic top 200K 200,000 117,833 June 12,2022
Alexa category top 6,000 4,859 May 31, 2022

] Total 306,000 204,773 N/A \

t: The number of websites from which the memory heap was successfully
extracted.

Alexa category top
(47 websites)
Alexa top 100K +
(221 websites) U‘

Majestic top 200K
(1,802 websites)

FIGURE 7. Distribution of the cryptojacking websites detected by CIRCUIT.

cryptojacking behaviors (see Figure 6). Thereafter, from
the 204,733 heap graphs generated for common websites
(Table 3), we extracted 49,791 reference flows related to web
workers. The number of reference flows related to web work-
ers is significantly below the number of heap graphs because
we ignored websites that only executed a single-thread (see
Section III). We then compared the extracted reference flows
to the stored cryptojacking signatures by employing the
Python library to obtain the edit distance between the two
reference flows. Specifically, we used the networkx library,
which contains the “similarity.optimize_graph_
edit_distance” function that measures the difference
between two graphs as an integer greater than or equal to
zero; if the distance is zero, the two input graphs are the same.
Hence, we set the threshold to 5 (defined in Section III-C)
and determined two graphs (i.e., two reference flows) with
an edit distance of below 5 as similar. We decided that
the target website that contains a similar reference flow to
cryptojacking signatures was the cryptojacking website.

2) DETECTION RESULTS

In our experiments, we found that 2,423 reference flows
from 1,813 websites are similar to cryptojacking signatures.
Figure 7 presents the distribution of cryptojacking websites
detected by CIRCUIT; note that several websites belong to
multiple groups. From the results, we confirmed the follow-
ing three observations.

1) Most detected cryptojacking websites (1,802 websites)
belong to the Majestic top 200K group.

2) When comparing the results of Alexa top 100K and
Majestic top 200K, less popular websites (top 101K to

95364

200K) may contain more cryptojacking behaviors than
very popular ones (top 1 to 100K).

3) Cryptojacking websites were hardly discovered in the
Alexa category top groups (top 500 per each category).

Since all detected websites contain a reference flow sim-
ilar to that of cryptojacking websites, the detected websites
contain the cryptojacking behaviors, either potentially or
directly. Manually inspecting all the detected websites is an
error-prone and burdensome task, and thus, we randomly
selected 100 websites (6%) and manually checked whether
they performed cryptojacking. To verify our results, as most
of cryptojacking websites leverage evasion techniques to
hide cryptojacking behaviors, we checked the CPU usage of
websites, an evaluation method that was used in the existing
approaches [35], [38], [42]; since we have already confirmed
that the websites detected by CIRCUIT contain cryptojack-
ing signatures, we decided that it was valid to verify them
by further investigating the CPU usage. As a result, all the
100 selected websites exhibited over 55% CPU usage; 25 out
of the 100 websites showed over 90% CPU usage. The CPU
usage of the verified websites was significantly higher than
that of the normal websites; the normal websites exhibited
below 1% CPU usage on average. This result affirmed that
CIRCUIT successfully detected malicious websites that were
actually running cryptojacking behaviors.

The main advantage of CIRCUIT is that it has reported
fewer false positives. In existing approaches (e.g., Out-
guard [41]), for example, if the number of threads on a
website is greater than the threshold, or if the resource con-
sumption is higher than the threshold, all of them are deter-
mined as cryptojacking websites. Although these websites
may use the resources of visitors, some of them ask for
the consent of the visitor, and most of them have a lower
influence on visitors than cryptojacking websites in terms of
resource consumption. Thus, we can argue that our result is
more precise and compact because CIRCUIT detects only
cryptojacking websites that clearly contain the cryptojacking
behavior.

B. EVASION TECHNIQUES

As cryptojacking websites were blocked by the emer-
gence of several applications, such as Dr.Mine [16] and
MinerBlock [25], attackers started hiding the mining script
code to avoid cryptojacking detection. Therefore, we gath-
ered the evasion techniques found in our experiment and
summarized them as the following four evasion models (E1
to E4). Figure 8 shows the heap graphs for each evasion
technique.

1) E1: OBFUSCATING THE SCRIPT CODE

Obfuscation is obfuscating and compressing cryptojacking
script codes on a website, or to hide notable keywords in the
script code using the CharCode or eval function. This is
one of the representative evasion techniques used to avoid
cryptojacking detection, which makes it difficult to detect

VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

IEEE Access

@ Wwindow © Web worker i__Mining threads ~ Modified parts

...............

E Separate
window

Mining threads decrease

(a) Original cryptojacking heap graph (b) Obfuscation

(c) Limiting resources usages (d) Separate window

FIGURE 8. Illustrations of heap graphs that change by various evasion techniques. In (c), the same reference flow (i.e., thread #0) as in (a) remains
identical even if the evasion technique is applied, thus, the edit distance between the two reference flows is zero. For (b) and (d), changes occurred
one by one at the node and edge of the mining reference flow, respectively, but the edit distance between mining thread #0 in (a) and mining thread
“0" in both of (b) and (d) is exceedingly small (the measured edit distance is 2). Note that the evasion technique for modifying the external server link

does not affect the original heap graph.

1| var _0x532b=[{_0x462888["“push”](_0x462888[“shift”] ());}...]; |

l| var miner = new Client.Anonymous(“<SITE-KEY>", {throttle: 0.1});

Listing 5. Example code for obfuscating the script code.

<script src = “/jquery.js”></script>
//below code shows the script code in the jquery.js file

(function () {
Mininig script code ...

HO;

QNN W —

Listing 6. Example code for modifying external server link.

cryptojacking using a static analysis technique [39], [43].
An instance of code obfuscation is presented in Listing 5, and
the entire heap graph of the corresponding code is presented
in Figure 8 (b).

Blacklisting based approaches, particularly when utiliz-
ing the script code of cryptojacking as a blacklist, may
fail to detect code-obfuscated cryptojacking websites. Since
CIRCUIT leverages memory heap information rather than
script code, we can detect cryptojacking websites regardless
of script code obfuscation.

2) E2: MODIFYING EXTERNAL SERVER LINK
This technique bypasses cryptojacking detection by changing
the link to load the cryptojacking script code to a random
value. In extreme cases, the external server link provided by
the cryptojacking vendor is first fetched by the attackers and
stored in their web server, and then the cryptojacking code
is loaded on its own. Here, detection is bypassed by chang-
ing the name of the script file containing the cryptojacking
script code to a generic name such as “jquery.js” or
“analysis. js”, as described in the below sample code
(Listing 6).

Since the memory heap of the script code was not modified
by this technique, the detection mechanism of CIRCUIT was
not affected by this evasion method.

3) E3: LIMITING RESOURCE USAGE

To disguise a cryptojacking website as a normal website,
attackers sometimes limit the computing resource usage dur-
ing cryptocurrency mining, e.g., by reducing the number of

VOLUME 10, 2022

Listing 7. Example code for limiting resource usage.

<iframe width=0 height=0 frameborder=0
src="https://cryptomining.com/mining?key=<SITE-KEY>">
</iframe>

W9 =

Listing 8. Example code for utilizing a separate window.

mining threads. This technique does not change significantly
in mining script code, but it is an option that is often utilized
to bypass the detection method based on resource monitoring.
For instance, attackers can leverage this technique by adding
the following simple option (i.e., throttle) to their script
code:

Here, detection methods based on resource monitoring
and thread counts may fail to detect cryptojacking websites.
However, even if the number of mining threads decreases,
the behavior of existing reference flows is maintained (e.g.,
mining thread #0 in Figure 8 (c)); therefore, CIRCUIT can
precisely detect these kinds of cryptojacking websites.

4) E4: UTILIZING A SEPARATE WINDOW

Cryptojacking websites bypass detection by embedding a
separate cryptojacking code, such as i frame, on the web-
site, allowing cryptomining without a specific script code.
In addition, by applying obfuscation to the embedded cryp-
tojacking code, cryptojacking detection becomes more diffi-
cult. The sample code is presented in Listing 8.

However, as shown in Figure 8 (d), only the start node of
the reference flow is replaced with another object, and there is
no change in the internal behavior. Therefore, CIRCUIT can
detect cryptojacking websites even if this evasion technique
is applied.

C. DISTRIBUTION OF WEBSITES WITH WEB WORKERS

As previously explained in Section II-B, some of the recent
approaches to detect cryptojacking have focused on the fact
that cryptojacking websites run several threads. Al learn-
ing using this indicator effectively detects cryptojacking

95365

IEEE Access

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

- (a) The proportion of multi-threaded websites ----------------oooooooooooo oy]

! Single-threaded websites (94%)]
Multi-threaded websites (6%) ‘

) The distribution of the number of web workers for multi-threaded websites - - -

P
%

Websites (log scaled) T
;% % 7000 %

123456 7 8 9101 1213141516 17 18 19 20 21 22 23 24>24 |

#Web workers |

FIGURE 9. Illustration of the proportion of multi-threaded websites
(a) and the distribution of the number of web workers in multi-threaded
websites (b).

websites, but several normal websites using multiple web
workers have also been mistakenly detected as cryptojacking
websites. Therefore, we checked the number of web workers
on these websites.

Consequently, 11,898 websites out of the total of 204,773
websites were using at least one web worker (i.e., running
multiple threads). Figure 9 (a) shows that websites that use
web workers accounts for only 6% of the total collected
websites. In addition, Figure 9 (b) shows the distribution of
the number of web workers in multi-threaded websites, and it
is observed that a website uses at least one to a maximum of
57 web workers, with an average of 1.4 web workers. Thread
count-based approaches consider the number of web workers
(number of threads) as an indicator; if at least three web
workers are included, then we identify a website as a cryp-
tojacking website. Among the 11,898 multi-threaded web-
sites, 413 websites used three or more web workers (3.6%).
When we additionally checked all 413 websites manually,
websites that were not injected cryptojacking included multi-
media processing or functions, such as Google reCAPTCHA,
by web workers. In summary, the difference in the number
of web workers shows the effect of significantly reducing
the scope range in the overall scale when detecting crypto-
jacking websites. However, for precise detection, the number
of web workers cannot be an absolute indicator. Therefore,
a more mature approach, such as CIRCUIT, which performs
behavior-based detection of cryptojacking through memory
heap analysis, is efficient from this perspective.

D. WEBSITES WITH MULTI-SERVICES

To evaluate the effectiveness of CIRCUIT on a website that
provides multiple services using different web workers, we
examined websites that use multiple web workers. However,
in our collected dataset, no website was found to simultane-
ously provide cryptojacking behavior and normal services;
this implies that a website generally uses multiple web work-
ers for the same service or only one web worker.

Therefore, for evaluation purpose, we intentionally
inserted cryptomining code into a website that uses a normal
web worker service to create a complex structured website
that runs multiple web workers in parallel. The cryptomin-
ing script code was injected at the client level using the
developer tool provided by the browser; this does not affect
the web server. Figure 10 shows the generated heap graph

95366

focusing on the identified reference flow after injecting the
cryptomining code of CoinIMP into the “057 . ua” website,
which uses a web worker intentionally. In the heap graph,
a web worker created using Google’s reCAPTCHA and a
web worker for cryptomining exist simultaneously, together
with seven other web workers, as shown in Figure 10. In this
example, the existing resource monitoring-based approach
or thread count-based approach determines that this website
runs cryptojacking before inserting the cryptomining code.
In addition, if we obfuscate the cryptomining code and insert
it into a website, blacklisting-based approaches fail to detect
this website as a cryptojacking website.

By contrast, since CIRCUIT considers an individual refer-
ence flow for each web worker, it can detect only web workers
related to cryptojacking, even in a complex structure. When
similarity was measured based on the reference flow of Coin-
IMP, the reference flow of the web worker used in Google’s
reCAPTCHA showed an edit distance of 11.0, whereas the
injected cryptomining reference flow showed an edit distance
of 2.0. This is not a characteristic of Google reCAPTCHA.
For instance, when we measured the similarity between ref-
erence flows of “Video. js” [23], “hls. js” [18], and
“vectortaillay.js” [11], which are generally exe-
cuted by various web workers, and the reference flows of
CoinIMP, the edit distances were obtained as 13.0, 18.0,
and 32.0, respectively. In conclusion, CIRCUIT can precisely
detect only web workers related to cryptomining, even on
websites with multiple web workers.

V. DISCUSSION
Here we discuss several considerations related to CIRCUIT.

A. CRYPTOJACKING DETECTION BASED ON THE
JAVASCRIPT MEMORY HEAP

Handling relatively heavy tasks in a web environment was
challenging before the introduction of web workers. The dis-
tinction between cryptojacking and normal websites became
ambiguous after introducing web workers; hence, methods
for detecting cryptojacking websites are required. In addition,
cryptojacking websites attempt to avoid detection through
various evasion techniques. Therefore, we focused on how to
flexibly cope with technologies to avoid detection and how to
precisely detect cryptojacking websites. If the memory area
allocated to the website is used, the detection ability will
not be affected unless the evasion technique directly affects
memory. CIRCUIT reduced false positives in cryptojacking
detection and showed robust results compared with the exist-
ing detection methods. In addition, the analysis results of the
evasion techniques and distribution of web workers in the
overall web environment proved the necessity and efficiency
of approaching memory rather than simply depending on
the script code, resource consumption monitoring, or several
threads. The detection method using this memory area can
flexibly cope with detection bypass technologies, which hin-
der cryptojacking detection, and will become an important
insight for detection methods focusing on accuracy.

VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

IEEE Access

)

Google CLDsur‘eﬁLmﬁ41691_7fA'h\ J
window, A4

Google CLosure_Lm_46536m J
window,

§

S J Web
LILE @ Workery

@aosure_m_snﬂy\ K e LS J Web
window, L) H orker,
057.ua
pindoy /-\a Ln_686432/~ I s 7 [web
Google \CLosure_Lm_ vee el
W ‘th < . Worker,

S J Web
ccr <o @ Worker,

Inserted cryptomining script code

temp verifyThread workerf Web

aH dE Worker,

_threads £\ 0 e workerf Web
Worke

FIGURE 10. Example of a website heap graph that operates multiple services including cryptomining.

B. LIMITATIONS

As CIRCUIT detects cryptojacking websites based on the
JavaScript memory heap, it can flexibly cope with detection
bypass techniques that do not directly affect the memory
heap. However, in some cases, CIRCUIT can report false
alarms.

« Object encapsulation. Mining-related objects can be
abnormally encapsulated; thus, the reference flow can
be extremely long in terms of memory, resulting in an
extensive editing distance when measuring the similarity
between reference flows.

« Extremely short reference flow. If the reference flow
for a web worker is extremely short, the edit distance
between two reference flows with different behaviors
can be measured as a very small integer.

A specific reference flow of a web worker found at the
site! had only three nodes and two edges. If an exceedingly
short cryptojacking reference flow is added later, it can lead to
false positives. Furthermore, we confirmed that the reference
flow of a web worker generated at the site 2 has 41 nodes and
40 edges. If the reference flow containing the cryptojacking
behavior becomes long because of abnormal encapsulation,
this can lead to false negatives. In addition, the detection of
a new cryptojacking code, i.e., unknown cryptojacking, is
outside the detection range of CIRCUIT. We are fully aware
of this problem, and as a possible solution, we considered
taint analysis using the data flow of the SITE-KEY. How-
ever, we do not have a clear solution as yet; hence we leave
this as future work. Finally, CIRCUIT cannot be used to
detect Wasm-based cryptojacking websites. Thus far, it has
been difficult to understand the memory structure of the web
assembly, thus making the direct application of CIRCUIT
challenging. However, if sufficient information about the
memory structure is provided, the same CIRCUIT algorithm
used in JavaScript can be applied to the web assembly.

VI. CONCLUSION

Increasing cryptocurrency values have led to an increase in
cryptojacking, which utilizes mining maliciously. Therefore,
we propose CIRCUIT, a precise approach for detecting cryp-
tojacking websites based on the JavaScript memory heap.

1https://www.acs.org/
2https://Www.chestnet.org/

VOLUME 10, 2022

We define a reference flow, which can represent script code
behavior for each thread on a website and utilize the refer-
ence flow to detect websites with cryptojacking behaviors.
CIRCUIT successfully detected 1,813 cryptojacking web-
sites from 300K real-world websites. We demonstrated the
efficacy of CIRCUIT by (1) precisely detecting cryptojacking
websites using evasion techniques and (2) clearly distinguish-
ing normal websites with similar characteristics to crypto-
jacking websites. In addition, the model of evasion tech-
niques that we discovered and the distribution of web workers
within a website can provide new insights for cryptojacking
detection.

REFERENCES

[1] (2016). The Wrapper Object. [Online]. Available:
javascriptrefined.io/the-wrapper-object-400311b29151

[2] (2017). Execution Context, Scope Chain and Javascript Internals.

[Online]. Available: https://medium.com/@happymishra66/execution-

context-in-javascript-319dd72e8e2c

(2018). The Javascript Runtime Environment. [Online]. Available:

https://medium.com/olinations/the-javascript-runtime-environment-

d58fa2e60dd0

(2018). UK ICO, USCourts.gov. .. Thousands of Websites Hijacked by Hid-

den Crypto-Mining Code After Popular Plugin Pwned. [Online]. Available:

https://www.theregister.com/2018/02/11/browsealoud_compromised_

coinhive/

(2019). McAfee Labs Threats Report. [Online]. Available: https://www.

mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-

2019.pdf

(2019). What are Primitive and Reference Types in JavaScript?

[Online]. Available: https:/itnext.io/javascript-interview-prep-primitive-

vs-reference-types-62eef165bec8

(2020). Alexa the Top Sites on the Web. [Online]. Available: https://www.

alexa.com/topsites

(2020). Alexa the Top Sites on the Web by Category. [Online]. Available:

https://www.alexa.com/topsites/category

(2021). Developer Survey. [Online].

stackoverflow.com/survey/2021

[10] (2022). About JavaScript. [Online]. Available: https://developer.
mozilla.org/en-U.S./docs/Web/JavaScript/ About_JavaScript

[11] (2022). ArcGIS API for JavaScript, Class: VectorTileLayer. [Online].
Available: https://developers.arcgis.com/javascript/3

[12] (2022). Chrome. [Online]. Available: https://www.google.com/intl/
en/chrome/

[13] (2022). Chrome Remote Interface. [Online]. Available: https://github.com/
cyrus-and/chrome-remote-interface

[14] (2022). CoinBlockerLists. [Online].
gitlab.io/CoinBlockerListsWeb

[15] (2022). Concurrency Model and the Event Loop. [Online]. Available:
https://developer.mozilla.org/en-U.S./docs/Web/JavaScript/EventLoop

[16] (2022). Dr. Mine. [Online]. Available: https://github.com/
1lastBr3ath/drmine

[17] (2022). Edit Distance. [Online]. Available: https://en.wikipedia.
org/wiki/Edit_distance

https://

3

[t

[4

=

[5

—

[6

—

[7

—

[8

—

[9 Available:

—

https://insights.

Available: https://zerodot].

95367

IEEE Access

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

[18]
[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]
[27]
[28]

[29]

[30]
[31]
[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

(2022). His.Js. [Online]. Available: https://github.com/video-dev/hls.js
(2022). How JavaScriptWorks: An Overview of JavaScript Engine, Heap,
and Call Stack. [Online]. Available: https://dev.to/bipinrajbhar/how-
javascript-works-under-the-hood-an-overview-of-javascript-engine-heap-
and-call-stack-1j50

(2022). Inheritance and the Prototype Chain. [Online]. Available:
https://developer.mozilla.org/en-U.S./docs/Web/JavaScript/Inheritance_
and_the_prototype_chain

(2022). Javascript—A Prototype Based Language. [Online]. Available:
https://en.wikipedia.org/wiki/JavaScript_engine

(2022). JavaScript Engine. [Online]. Available: https://medium.com/@
theflyingmantis/javascript-a-prototype-based-language-7e814cc7aeOb
(2022). Make Your Player Yours With the World’s Most Popu-
lar Open Source HTMLS Player Framework. [Online]. Available:
https://videojs.com

(2022). Memory Management. [Online]. Available: https://developer.
mozilla.org/en-U.S./docs/Web/JavaScript/Memory_Management

(2022). MinerBlock Github. [Online]. Available: https://github.
com/xd4rker/MinerBlock

(2022). Object-Oriented Programming. [Online]. Available: https://en.
wikipedia.org/wiki/Object-oriented_programming

(2022). Puppeteer. [Online]. Available: https:/github.com/
puppeteer/puppeteer

(2022). The Majestic Million. [Online]. Available: https://majestic.
com/reports/majestic-million

(2022). Visualizing ~ Memory Management in V8 Engine
(JavaScript, NodeJS, Deno, WebAssembly). [Online]. Available:
https://deepu.tech/memory-management-in-v8

(2022). Web Workers. [Online]. Available: https://www.w3.org/
TR/workers/

(2022). Web Workers API. [Online]. Available: https://developer.mozilla.
org/en-U.S./docs/Web/API/Web_Workers_API

(2022). WebAssembly. [Online]. Available: https://developer.
mozilla.org/en-U.S./docs/WebAssembly

(2022). What is JavaScript? [Online]. Available: https://developer.mozilla.
org/en-U.S./docs/Learn/JavaScript/First_steps/What_is_JavaScript
(2022). Window: Load Event. [Online]. Available: https://developer.
mozilla.org/en-U.S./docs/Web/API/Window/load_event

W. Bian, W. Meng, and M. Zhang, “MineThrottle: Defending against
wasm in-browser cryptojacking,” in Proc. Web Conf., Apr. 2020,
pp. 3112-3118.

H. L. Bijmans, T. M. Booij, and C. Doerr, “Inadvertently making cyber
criminals rich: A comprehensive study of cryptojacking campaigns at
internet scale,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 1627-1644.
S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A first look at
browser-based cryptojacking,” in Proc. IEEE Eur. Symp. Secur. Privacy
Workshops (EuroSPW), Apr. 2018, pp. 58—-66.

G.Hong,Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang, M. Yang, Y. Zhang,
Z. Qian, and H. Duan, “How you get shot in the back: A systematical
study about cryptojacking in the real world,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2018, pp. 1701-1713.

A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,
“Revolver: An automated approach to the detection of evasive web-based
malware,” in Proc. 22nd USENIX Secur. Symp., 2013, pp. 637-652.

C. Kelton, A. Balasubramanian, R. Raghavendra, and M. Srivatsa,
“Browser-based deep behavioral detection of web cryptomining with coin-
spy,” in Proc. Workshop Meas., Attacks, Defenses Web, 2020, pp. 1-12.
A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,
M. Antonakakis, and M. Bailey, “Outguard: Detecting in-browser covert
cryptocurrency mining in the wild,” in Proc. World Wide Web Conf., 2019,
pp. 840-852.

R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos,
and G. Vigna, “MineSweeper: An in-depth look into drive-by cryptocur-
rency mining and its defense,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Oct. 2018, pp. 1714-1730.

A. Moser, C. Kruegel, and E. Kirda, ““Limits of static analysis for malware
detection,” in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 2007, pp. 421-430.

M. Musch, C. Wressnegger, M. Johns, and K. Rieck, “New kid on the
web: A study on the prevalence of webassembly in the wild,” in Proc.
Int. Conf. Detection Intrusions Malware, Vulnerability Assessment. Cham,
Switzerland: Springer, 2019, pp. 23-42.

95368

[45] J. Riith, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging into
browser-based crypto mining,” in Proc. Internet Meas. Conf., 2018,
pp. 70-76.

HYUNIJI HONG received the B.S. degree in com-
puter science and engineering from Hanshin Uni-
versity, Gyeonggi-do, South Korea, in 2020. She
is currently pursuing the M.S. degree with the
Department of Computer Science and Engineer-
ing, Korea University, Seoul, South Korea. Her
research interests include software security, vul-
nerability detection, and vulnerability analysis.

SEUNGHOON WOO received the B.S., M.S.,
and Ph.D. degrees in computer science and engi-
neering from Korea University. He is currently the
Research Professor with the Center for Software
Security and Assurance (CSSA), Korea Univer-
sity, and the Chief Scientist of Labrador Labora-
tories Inc. He has published papers on software
security and software engineering in top confer-
ences, such as S&P, USENIX security, and ICSE.
His research interests include software security,
vulnerability detection, and software composition analysis.

SUNGHAN PARK received the M.S. degree from
the Department of Computer Science and Engi-
neering, Korea University, Seoul, South Korea,
in 2021. His research interests include web secu-
rity, software analysis, and malware detection.

JEONGWOOK LEE is currently pursuing the
bachelor’s degree in computer science and engi-
neering with Korea University, Seoul, South
Korea. His research interests include vulnerabil-
ity detection, malware detection, and vulnerability
analysis.

HEEJO LEE (Member, IEEE) received the B.S.,

M.S., and Ph.D. degrees in computer science

£ = and engineering from POSTECH. He is cur-

rently a Professor with the Department of Com-

puter Science and Engineering, Korea University,

and the Director of the Center for Software

’ Security and Assurance (CSSA). Before join-

\ ing Korea University, he worked as the CTO

‘ o at AhnLab Inc., from 2001 to 2003, and as

ud a Postdoctoral Researcher at Purdue University,

from 2000 to 2001. He is an Editor of the Journal of Communications and

Networks and the International Journal of Network Management. He is a
Founding Member and the Co-CEO of Labrador Laboratories Inc.

VOLUME 10, 2022

