
Received 8 August 2022, accepted 31 August 2022, date of publication 6 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204814

CIRCUIT: A JavaScript Memory Heap-Based
Approach for Precisely Detecting Cryptojacking
Websites
HYUNJI HONG∗ , SEUNGHOON WOO∗ , SUNGHAN PARK∗,
JEONGWOOK LEE, AND HEEJO LEE , (Member, IEEE)
Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Corresponding author: Heejo Lee (heejo@korea.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) by the
Korean Government through the Development of Automated Vulnerability Discovery Technologies for Blockchain Platform Security
under Grant 2019-0-01697, in part by the Development of Software Bill of Materials (SBOM) Technologies for Securing Software Supply
Chains under Grant 2022-0-00277, in part by the Convergence Security Core Talent Training Business under Grant 2022-0-01198, and in
part by the ICT Creative Consilience Program under Grant IITP-2022-2020-0-01819.

∗Hyunji Hong, Seunghoon Woo, and Sunghan Park contributed equally to this work.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ABSTRACT Cryptojacking is often used by attackers as a means of gaining profits by exploiting users’
resources without their consent, despite the anticipated positive effect of browser-based cryptomining.
Previous approaches have attempted to detect cryptojackingwebsites, but they have the following limitations:
(1) they failed to detect several cryptojacking websites either because of their evasion techniques or because
they cannot detect JavaScript-based cryptojacking and (2) they yielded several false alarms by focusing only
on limited characteristics of cryptojacking, such as counting computer resources. In this paper, we propose
CIRCUIT, a precise approach for detecting cryptojacking websites. We primarily focuse on the JavaScript
memory heap, which is resilient to script code obfuscation and provides information about the objects
declared in the script code and their reference relations. We then extract a reference flow that can represent
the script code behavior of the website from the JavaScript memory heap. Hence, CIRCUIT determines
that a website is running cryptojacking if it contains a reference flow for cryptojacking. In our experiments,
we found 1,813 real-world cryptojacking websites among 300K popular websites. Moreover, we provided
new insights into cryptojacking by modeling the identified evasion techniques and considering the fact that
characteristics of cryptojacking websites now appear on normal websites as well.

15 INDEX TERMS Browser security, web security, cryptojacking.

I. INTRODUCTION16

Cryptojacking is a well-known cyberattack that applies vic-17

tims’ computer resources (e.g., CPU and memory) for cryp-18

tocurrency mining without the consent of the victims. The19

cryptocurrency that is generated during the mining process20

can be hijacked by attackers for profit. Previously, crypto-21

jacking was executed by inducing users to execute malicious22

programs, similar to existing malicious attacks, e.g., trojan23

and ransomware attacks. Recently, however, the more threat-24

ening cryptojacking has appeared, which has been imple-25

mented based on the modern web environment, and the mali-26

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

cious script code of cryptojacking is automatically executed 27

on the client side when a user visits a cryptojacking website. 28

Hence, detecting cryptojacking websites and filtering them 29

out in the web environment is crucial for protecting user 30

resources. However, the precise detection of cryptojacking 31

websites is complex and prone to errors. As script code 32

obfuscation techniques are frequently applied to crypto- 33

jacking websites, it is increasingly growing more challeng- 34

ing to detect cryptojacking based on the static analysis 35

approach. Furthermore, the cryptojacking websites’ charac- 36

teristics (e.g., running numerous threads or consuming high 37

resources of victims’ computers) now appear on various 38

normal websites (e.g., live-streaming websites), thereby com- 39

plicating the precise detection of cryptojacking websites. 40

95356 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0600-606X
https://orcid.org/0000-0002-5455-0804
https://orcid.org/0000-0002-5831-0787
https://orcid.org/0000-0003-1930-9473

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

Existing cryptojacking detection approaches mainly use41

the following four techniques: blacklisting-based [14], [16],42

[25], [37], [42], [45], resource monitoring-based [38], [40],43

thread count-based [38], [41], andWebAssembly-based tech-44

niques [35], [42]. Although they all provide insights into45

detecting cryptojacking, they have limitations in terms of46

the precise detection of cryptojacking. Blacklisting-based47

approaches stored the characteristics appearing on crypto-48

jacking websites as blacklists (e.g., domain, script code, and49

external server link) and determined a website that contains50

the stored blacklists as cryptojacking websites. However,51

these approaches failed to detect several cryptojacking web-52

sites because they can be easily bypassed by simple evasion53

techniques, such as script code obfuscation or a domain gen-54

eration algorithm (DGA), which steadily changes the exter-55

nal server link. By contrast, resource monitoring-based and56

thread count-based approaches, which focus on cryptojacking57

requiring several computer resources and threads, respec-58

tively, yield numerous false positives because even recent59

normal websites, require several threads and high computer60

resource consumption (e.g., web-game or streaming sites).61

Last, the WebAssembly-based approaches exhibit low detec-62

tion coverage because they cannot detect the most common63

JavaScript-based cryptojacking websites.64

A. OUR APPROACH65

In this study, we propose CIRCUIT, a precise approach for66

detecting cryptojacking websites. We define a unit called a67

reference flow, which represents cryptojacking behavior and68

is robust against JavaScript code obfuscation, and use it to69

detect cryptojacking websites.70

We mainly focus on the JavaScript memory heap of the71

websites. Thememory heap reveals the declared objects in the72

website’s script code and their reference relations. To execute73

cryptojacking, a website should run multiple threads using74

web workers (see Section II-A). Hence, CIRCUIT extracts75

the behavior of each thread separately from the heap graph,76

which is called the reference flow. Subsequently, CIRCUIT77

extracts all reference flows from known cryptojacking web-78

sites, stores them as the signature of cryptojacking, and com-79

pares all reference flows of the target website with the stored80

cryptojacking signatures. If at least one reference flow of81

the target website is similar to the cryptojacking signature,82

then the website is identified as a cryptojacking website.83

As we focused on the memory heap, CIRCUIT can robustly84

detect cryptojacking websites even with an obfuscated script85

code. In addition, CIRCUIT can detect cryptojacking web-86

sites more precisely than existing approaches by detecting the87

reference flow containing the actual cryptojacking behavior88

rather than simply focusing on the characteristics of several89

threads or high resource consumption, commonly appearing90

on normal websites.91

B. EVALUATION92

For the experiment, we collected over 300K real-world web-93

sites, including the Alexa top 100K and Majestic top 200K94

websites. Among them, CIRCUIT detected 1,813 cryptojack- 95

ing websites with cryptojacking behaviors, most of which 96

used evasion techniques to avoid cryptojacking detection. 97

CIRCUIT responded flexibly to evasion techniques in four 98

categories based on the evasion techniques modeled in the 99

experiment. Furthermore, by analyzing the distribution of 100

the number of threads of the collected websites, we demon- 101

strated the limitations of the existing resource monitoring 102

and thread-count-based approaches and proved the efficiency 103

of CIRCUIT from the perspective of precise cryptojacking 104

detection (see Section IV). 105

C. CONTRIBUTIONS 106

We summarize our contributions below: 107

• We propose CIRCUIT, a precise approach for detecting 108

cryptojacking websites based on the JavaScript memory 109

heap. CIRCUIT is robust to evasion techniques applied 110

to cryptojacking websites to avoid cryptojacking detec- 111

tion. 112

• Although evasion techniques were applied to most of the 113

identified cryptojacking websites, CIRCUIT succeeded 114

in detecting 1,813 cryptojacking websites from 300K 115

real-world websites. 116

• Modeling evasion techniques to avoid cryptojacking 117

detection allows us to provide new insights into cryp- 118

tojacking as behaviors previously associated with cryp- 119

tojacking now appear widely on normal websites. 120

II. BACKGROUND AND RELATED WORK 121

This section describes the background knowledge related to 122

cryptojacking (Section II-A) and introduces related works on 123

cryptojacking detection (Section II-B). 124

A. BACKGROUND AND TERMINOLOGY 125

1) CRYPTOCURRENCY MINING 126

Cryptocurrency is a digital asset designed to function as a 127

medium of exchange. Cryptocurrency mining (cryptomin- 128

ing) is the process of validating a cryptocurrency transac- 129

tions. To gain cryptocurrencies (e.g., Bitcoin and Ethereum), 130

Proof-of-Work (PoW) is performed, which is a blockchain 131

consensus mechanism. In a nutshell, peers (i.e., miners) in 132

the PoW blockchain network solve complex mathematical 133

problems with taxing computational power. The fixed time 134

(e.g., 10 minutes for Bitcoin) rewards (i.e., cryptocurrency) 135

a peer who wins the race and mines the block. Mining is 136

computationally taxing because only the first miner who 137

solves the problem is rewarded. To strengthen the probabil- 138

ity of finding a block, miners combine their computational 139

resources through public mining pools. 140

2) CRYPTOJACKING 141

Cryptojacking refers to the malicious behavior that intercepts 142

all profits arising cryptomining by using the visitors’ 143

resources in a web environment, without their consent. 144

When visiting a website injected with cryptomining, a user’s 145

VOLUME 10, 2022 95357

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

FIGURE 1. Overview of cryptojacking process.

computational resources are hijacked to mine cryptocur-146

rency. Specifically, the web technology evolution, such as147

JavaScript (JS) and WebAssembly (Wasm), makes it easy148

to access users’ resources and leverage them in the mining149

process; simply inserting the JavaScript code that supports150

mining services into the web page can infect website visitors.151

Moreover, since the cryptojacking code executes automati-152

cally and works as a background on the webpage, visitors153

hardly realize that they are infected. Figure 1 shows the154

workflow of the cryptojacking process.155

Cryptojacking is executed in the following three steps:156

1) Executing cryptojacking code on a website. When157

a user visits a website, the web browser automat-158

ically loads the website code files (e.g., necessary159

libraries and external resources) and executes160

them. As the cryptocurrency script code was previously161

inserted in the website, it is also executed in this step.162

2) Participating in a mining pool. The executed cryp-163

tojacking code authenticates the visitor’s PC by using164

a predefined mining pool. Thereafter, the visitor (i.e.,165

victim) is forced to participate in the mining pool,166

organized to mine cryptocurrency.167

3) Mining and gaining profits. The computer resources168

of the victim’s PC mine the cryptocurrency, and then169

themined cryptocurrency is sent to the attacker’s digital170

wallet address, which was previously defined in the171

cryptojacking code of the website.172

Unlike traditional malware, cryptojacking exploits only the173

victim’s computer resources; the victim has a minor infection174

symptoms, such as slow computer performance or an increase175

in power consumption, making it difficult to recognize cryp-176

tojacking. Furthermore, since cryptojacking runs in a web177

environment, its execution is less restrictive, and various178

devices and operating systems may be exposed to crypto-179

jacking. Therefore, cryptojacking has attracted attention as180

a stable and continuous means of profit for attackers.181

3) JAVASCRIPT ENGINE182

The workflow of the JavaScript engine, where the cryptojack-183

ing code is executed, is shown in Figure 2. The JavaScript184

engine first analyzes the syntax errors of the script code, and185

if there are no errors, it starts reading the script code from186

top to bottom and converts the code into a machine language.187

To interpret and execute JavaScript code, two large areas are188

required: the memory heap and call stack [3], [19], [21].189

FIGURE 2. The workflow of the JavaScript engine. The JavaScript engine
only handles one task at a time stored in the call stack, i.e., single-thread
process.

• Memory heap.When variables and objects are declared 190

in the JavaScript code, the JavaScript engine allocates 191

memory to them and stores the allocated memory infor- 192

mation in the memory heap. 193

• Call stack. When the JavaScript engine finds an exe- 194

cutable syntax in the script code, such as a function call, 195

it adds the syntax into the call stack and executes the 196

stored syntax one by one according to the last-in-first- 197

out (LIFO) format. 198

If an asynchronous function is executed (e.g., a callback 199

function), the JavaScript engine calls the web API, which 200

is provided by the browser. The web API stores an asyn- 201

chronously executed function in the task queue. Thereafter, 202

the event loop [15] checks the status of the call stack and 203

task queue, and when the call stack becomes empty, the 204

first callback of the task queue is put into the call stack and 205

executed. 206

4) WEB WORKER 207

JavaScript has become one of the most popular lan- 208

guages [9], [10], [33], and the cryptojacking that leverages 209

it has also been on the rise recently [5]. In JavaScript, 210

web workers enable multi-threaded processing. Previously, 211

JavaScript only supported a single-thread process, mean- 212

ing that JavaScript could only process one task at a time. 213

Therefore, when a task was performed, the following task 214

waited until the previous task was completed. If websites 215

had heavy tasks that could not afford a single thread, they 216

became unresponsive due to the overhead. To address this 217

problem, a web worker [30], [31] was introduced to support a 218

multithread process in JavaScript. As cryptomining requires 219

a lot of resources to recursively check the validity of several 220

blocks connected to a cryptocurrency network (i.e., a heavy 221

task), it is indispensable that browser-based cryptomining is 222

implemented through a multi-thread process. Consequently, 223

the appearance of web workers has a significant influence on 224

making cryptojacking more active. 225

5) DATA TYPES IN JAVASCRIPT 226

In JavaScript, data types belong to two categories: primitive 227

value and reference value [6]. 228

• Primitive value: When primitive values are assigned 229

to variables, they are stored in fixed sizes in the mem- 230

ory; therefore, they are stored on the call stack along 231

95358 VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

Listing 1. Example code showing the difference between primitive and
reference values.

Listing 2. An example of JavaScript prototype chains.

with the actual values. JavaScript provides the follow-232

ing types of primitive values called wrapper objects:233

number, string, boolean, null, undefined,234

and symbol [1].235

• Reference value: When the variables are not assigned236

to wrapper objects, they are used as reference values.237

The size of the reference value is not fixed; therefore,238

it is stored in the heap along with its location; variables239

only have memory addresses instead of values for data.240

All data types, except wrapper objects, are contained in241

the reference variables (e.g., array, object, and function).242

As an example of these two data types, Listing 1 presents243

the difference between primitive and reference values.244

Case (1) in Listing 1 presents the case when a primitive245

variable is copied to a certain variable. Since the value of246

the variable is copied, variable b outputs the previous value247

of variable a. By contrast, case (2) in Listing 1 presents the248

case when a reference variable is copied to a certain variable.249

As the reference value stores the address in the memory,250

variable b is changed along with the modification of variable251

a because values with the same memory address always refer252

to the same data; this allocation of memory addresses to253

access data is referred to as a reference in JavaScript.254

6) PROTOTYPE-BASED LANGUAGE IN JAVASCRIPT255

To understand code reuse in JavaScript, we introduce the con-256

cept of prototype-based programming language in JavaScript.257

As explained in Section II-A5, most variables are objects,258

except for those assigned a primitive type. Every object in259

JavaScript has a property that has keys and values, and this260

property is called a prototype [22], [26]. When creating an261

object, it can inherit methods and properties from a par-262

ent object in a template format; this is called the prototype263

chain [20] (see Listing 2).264

TABLE 1. Prototype chains for Listing 2.

Listing 2 presents an instance of the JavaScript code 265

used to describe the prototype chain, and Table 1 lists 266

the prototype chains for the corresponding code. As the 267

basic type of JavaScript is the object, all elements, such 268

as functions and arrays, are linked to a top-level object, 269

Object.prototype. The top-level object has null as its 270

prototype; therefore, the prototype chain ends. 271

B. RELATED WORK 272

Several existing approaches detect and prevent threats caused 273

by cryptojacking. We reviewed four types of existing 274

approaches: (1) blacklisting-based, (2) resource monitoring- 275

based, (3) thread count-based, and (4) WebAssembly-based 276

approaches. 277

1) BLACKLISTING-BASED APPROACH 278

These approaches store elements with unique cryptojack- 279

ing characteristics (e.g., external resources links and script 280

codes) as keywords in the blacklist and use them to detect 281

cryptojacking [14], [16], [25], [37], [42], [45]. If the stored 282

keywords are detected on a website (e.g., if the domain of 283

a website is the same as a blacklisted domain), the website 284

is considered as a cryptojacking website. This approach is 285

useful for detecting cryptojacking when an attacker fetches 286

and abuses known cryptojacking code. 287

2) RESOURCE MONITORING-BASED APPROACH 288

A resource monitoring approach is based on the fact that 289

cryptojacking is a resource-intensive task [38], [40]. This 290

method detects a website as a cryptojacking website if the 291

computer resources (e.g., CPU usage) exceed a predeter- 292

mined threshold when visiting the website. In particular, this 293

approach has been highlighted as a new detection mechanism 294

because it is not affected by script code obfuscation and is 295

more convenient than a blacklisting-based approach requiring 296

continuous management of blacklists. 297

3) THREAD COUNT-BASED APPROACH 298

As cryptojacking requires continuous mining, a thread with a 299

separate execution space was created to proceed with min- 300

ing. Unlike a normal website, the number of threads on a 301

cryptojacking website is proportional to profitability [38], 302

[41]. Consequently, several approaches have found a dif- 303

ference in the number of threads between cryptojacking 304

and normal websites, and proposed methods can be uti- 305

lized for cryptojacking detection [41]. This approach detects 306

VOLUME 10, 2022 95359

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

cryptojacking more flexibly than blacklisting-based or307

resource-monitoring-based approaches.308

4) WEBASSEMBLY-BASED APPROACH309

Wasm is a binary instruction format that can run in mod-310

ern web browsers along with JavaScript [32]. It provides311

near-native performance for web applications, and any lan-312

guage (e.g., C, C++, and Rust) can be compiled. Owing313

to the advantages of Wasm, an increasing number of attack-314

ers are using Wasm to employ cryptojacking websites [44].315

In light of this, several approaches [35], [42] targeted cryp-316

tojacking websites based on Wasm, and proposed detection317

methods using static and dynamic features related to Wasm318

(e.g., by counting Wasm instructions).319

Limitations of Existing Approaches: Existing approaches320

provide insights into detecting cryptojacking websites; how-321

ever, we confirmed that each has limitations in precisely322

detecting cryptojacking websites.323

Blacklisting-based approaches have two main limitations.324

As this approach is solely dependent on the stored keywords,325

keywords related to cryptojacking must be periodically col-326

lected; thus, when new cryptojacking appears, it is impossible327

to detect until the relevant keyword is stored in the black-328

list. Furthermore, attackers can easily bypass blacklist-based329

detection by creating keywords that are not included in330

the blacklist using obfuscation or DGA. Hong et al. [38]331

and Konoth et al. [42] systematically analyzed cryptojack-332

ing. Specifically, Hong et al. [38] determined the life cycle333

of cryptojacking websites and the proper blacklist updating334

period, and proved that it was not enough to detect crypto-335

jacking by relying only on the blacklist. By contrast, resource336

monitoring-based approaches have a false-positive problem.337

Recently, it is more common to provide extensive work to338

the web environment (e.g., real-time video streaming) that339

shows high resource usage. Therefore, simply relying on340

resource usage monitoring can result in normal websites341

with high resource usage being mistaken as cryptojacking342

websites. In addition, thread count-based approaches can-343

not precisely detect cryptojacking because normal websites344

using multiple threads have appeared. Finally, Wasm-based345

approaches exhibited low detection coverage; even if several346

websites that employed Wasm were malicious, only 0.16%347

of the websites used Wasm among the Alexa Top 1 million348

websites [44]. As the proportion of Wasm-based websites349

is insignificant, JavaScript-based cryptojacking websites350

should be included in the scope of detection.351

III. DESIGN OF CIRCUIT352

This section introduces the CIRCUIT methodology, which353

focuses on detecting JavaScript-based cryptojackingwebsites354

and is robust against JavaScript code obfuscation. Figure 3355

shows the high-level workflow of CIRCUIT.356

A. OVERVIEW357

CIRCUIT comprises the following two phases: (1) P1 for358

generating signatures and (2) P2 for detecting cryptojacking.359

FIGURE 3. High-level workflow of CIRCUIT.

In P1, CIRCUIT first generates a heap graph that shows 360

the behavior of the script code running on the website to 361

detect cryptojacking, even if its script codes are obfuscated. 362

CIRCUIT then extracts reference flows, that refer to the refer- 363

ence relations between objects in JavaScript. As the reference 364

flows can denote the call flow of objects, we decided that 365

the reference flows would represent cryptojacking behaviors. 366

Therefore, CIRCUIT stores the reference flows of known 367

cryptojacking websites as cryptojacking signatures. In P2, 368

CIRCUIT compares the reference flows of the target web- 369

sites with the signatures. If the reference flow of the target 370

website resembles that of cryptojacking websites, CIRCUIT 371

identifies the target website as a cryptojacking website. 372

Key Idea: CIRCUIT utilizes the fact that script code obfus- 373

cation does not directly affect the information stored in mem- 374

ory, and web threads are stored in the memory area as objects. 375

Thus, it is very flexible for indistinguishable script codes 376

and can be analyzed by classifying web threads individually. 377

If a mining-related thread is discovered on a website, it is 378

identified as a cryptojacking site. 379

To precisely detect cryptojacking sites, we leveraged two 380

key observations as follows: 381

1) Form of cryptojacking code reuse. Cryptojacking 382

source code is generally provided by vendors through 383

external links, and attackers utilize it in the form of 384

third-party libraries [4], [36], [38]. 385

2) Distinguishable behaviors of cryptojacking. To gain 386

benefits, cryptojacking should perform its own mining 387

behaviors, distinguishable from normal websites, e.g., 388

as joining a mining pool→ mining cryptocurrency→ 389

sending rewards to attackers. 390

These two observations provide the following intuition: 391

since cryptojacking is utilized in a third-party library form 392

(i.e., cryptojacking families), the JavaScript call stack and 393

memory heap are comparable among websites using the same 394

cryptojacking [41]. Furthermore, each cryptojacking contains 395

its behavior; therefore, we can use the behavior as the signa- 396

ture of cryptojacking and detect cryptojacking websites by 397

analyzing whether a particular website contains the same or 398

similar behaviors of cryptojacking. 399

B. SIGNATURE GENERATION (P1) 400

This section introduces the methodology for heap graph 401

generation (Section III-B1) and reference flow extraction 402

(Section III-B2). 403

95360 VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

Listing 3. Example of a JavaScript code snippet to illustrate the heap
graph generation.

FIGURE 4. Overview of heap graph generation.

1) HEAP GRAPH GENERATION404

First, CIRCUIT generates a JavaScript memory heap graph405

from a website. A node in the graph is a set of all the objects406

in thememory heap of the JavaScript engine, where the object407

includes special types, such as wrapper objects and window408

objects. An edge in a graph is a set of values that expresses the409

reference relation between two objects. In other words, it is410

a set of values in which a memory address value is allocated411

to access the corresponding memory address (e.g., variable412

names).413

Let us consider the following code snippet as the running414

example.415

The obfuscated code for Listing 3 is shown in Figure 4 (a).416

Even if Listing 3 contains only variable declaration state-417

ments, the obfuscated code of Listing 3 is difficult to under-418

stand. However, the memory heap contains the declared419

object and variable names (see Figure 4 (b)); therefore,420

we can identify them via the memory heap. Thus, we only421

consider the memory heap of JavaScript.422

To obtain the memory heap information from a website,423

we take a snapshot of the website when all contents of the424

document (e.g., images, scripts, and CSS) are loaded (by load425

event [34]). As JavaScript is an interpreted language, mem-426

ory is steadily allocated and deallocated while a website is427

running. Specifically, the allocated memory is automatically428

deallocated when the variables and objects corresponding to429

the memory in the source code are no longer required because430

of garbage collection (GC) [24]. Fortunately, cryptojacking431

has a pattern of executing repetitive tasks within a website432

for mining, and thus, the allocated memory is not deallocated433

before a user leaves the website; there is no loss of memory434

information through GC. Therefore, we decide to take a snap-435

shot of the website with all contents of the document loaded.436

To extract the memory heap of the websites, we can easily437

obtain the objects declared in the website script code and438

FIGURE 5. The illustration of the difference between a single-thread heap
graph and multi-thread heap graph, particularly based on the WebWorker
nodes.

their reference relations by taking heap snapshots using the 439

JavaScript engine. For instance, theV8 JavaScript engine [29] 440

provides data in JSON format, and object and reference infor- 441

mation can be obtained by parsing the corresponding JSON. 442

Next, as described in Section II-A6, if objects with ref- 443

erence relations are connected, a heap graph is constructed. 444

In the running example (Listing 3), ‘‘foo’’ exists in the 445

string node because it belongs to the wrapper object 446

as a string type of data. As the variable ‘‘key’’ refers to 447

the memory address where the value of ‘‘foo’’ is stored, it is 448

converted to an edge and connects ‘‘Foo’’. The variable ‘‘a’’, 449

created by the constructor function of class ‘‘Foo’’ is a value 450

that has the memory address for the created ‘‘Foo’’ object, 451

and therefore ‘‘a’’ is converted into an edge that connects 452

the node indicating the web page itself and the ‘‘Foo’’ node. 453

Thus, to access the value ‘‘foo’’ from a web page, we first 454

access ‘‘Foo’’ node by ‘‘a’’ edge which has the memory 455

address value of ‘‘Foo’’, and then access ‘‘foo’’ node by 456

a key edge that also has the memory address of ‘‘foo’’. 457

Figure 4 depicts the overall flow where Listing 3 is converted 458

into a heap graph. 459

The generated heap graph can express the reference rela- 460

tions between the objects declared on the website; therefore, 461

we can grasp the passing of all object flows to access a 462

particular object. Consequently, the heap graph can identify 463

and display declared variables or objects, even though the 464

script code of a website is obfuscated. 465

2) REFERENCE FLOW EXTRACTION 466

CIRCUIT extracts reference flows from the generated heap 467

graph. Reference flows are defined as the reference relations 468

between objects in JavaScript, which denote the call flows of 469

objects. We first reduce the searching space by focusing on 470

the existence of a multi-thread. As previously explained in 471

Section II-A4, running a multi-thread is an essential property 472

for cryptojacking. Consequently, to determinewhether aweb- 473

site runs multiple threads, we confirm whether a web worker 474

exists in the heap graph of the website. In general, if a website 475

runs multi-thread, the WebWorker object is contained in the 476

memory heap, as shown in Figure 5. Subsequently, CIRCUIT 477

first finds the WebWorker node in the heap graph to deter- 478

mine whether the website runs multi-thread, and thereafter 479

CIRCUIT attempts to extract reference flows from the heap 480

graph. 481

VOLUME 10, 2022 95361

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

Listing 4. Script code of CoinIMP.

Since the WebWorker object is created through the con-482

structor function on a website [30], [31], a value that refers483

to the memory address of the WebWorker object must exist,484

and this value remains as an unique path that can be accessed485

for use on a website. To obtain a reference flow for each web486

worker, CIRCUIT defines the execution context [2], which is487

an environment for executing the JavaScript code as the start488

node and WebWorker object as the end node.489

Subsequently, we traverse the heap graph using the490

depth-first search (DFS) and collect all the nodes and edges491

passing between the execution context and WebWorker492

object as the reference flow of each web worker. In the493

reference flow, information about the objects declared by494

the web worker and the reference relations between various495

objects are revealed. In other words, in the reference flow496

that directly executes cryptojacking, the object and reference497

relation related to the actual mining process are revealed.498

Thus, we employ the reference flow to detect cryptojacking499

websites.500

C. CRYPTOJACKING DETECTION (P2)501

Next, CIRCUIT detects cryptojacking websites using the502

extracted reference flows.503

1) SIGNATURES FOR CRYPTOJACKING WEBSITES504

To identify whether the extracted web worker’s reference505

flow contains cryptojacking behavior, we first explain the506

cryptojacking structure and how it is accessed and executed.507

The cryptomining script code has three areas: the head,508

body, and tail. The head is a script code area for import-509

ing cryptojacking related resources (e.g., objects and vari-510

ables) with an external server link. The body is a code area511

that declares the necessary functions and objects before the512

mining operation is executed on a cryptojacking website.513

Finally, the tail is a code area where an object is created514

for mininig on the client side, and the mining is executed.515

For example, Listing 4 represents a real-world cryptojack-516

ing code (i.e., CoinIMP). In this code snippet, lines #1517

and #2 belong to the head, line #4 belongs to the body,518

and lines #8 and #9 belong to the tail. As mentioned in519

Section III-A, the cryptojacking code is mainly distributed520

in a general third-party form and is executed through the521

same script code from each cryptojacking vendor. There-522

fore, if the websites utilize the same cryptojacking vendor,523

the head, body, and tail of cryptojacking codes will524

be similar. As the operations performed by cryptojacking,525

FIGURE 6. Example of extracted reference flows from known
cryptojacking websites.

particularly the mining operations performed on the body, 526

remain identifiable in the memory heap, we can use this 527

information to detect cryptojacking websites, irrespective of 528

code obfuscation. 529

Therefore, we collect the cryptomining script code pro- 530

vided by the cryptojacking vendors. To extract reference 531

flows from the collected cryptomining script code, we create 532

an arbitrary website to open a web server inside and embed 533

the collected script code. We then implement a cryptomin- 534

ing website using the collected cryptomining script code 535

by referring to the provided usage document and storing 536

the heap information of the JavaScript engine created when 537

the website is executed. Subsequently, we generate the heap 538

graph from the JavaScript memory heap and then extract 539

the reference flows from each web worker. The extracted 540

reference flows for each vendor are indexed by the name 541

of each vendor. Figure 6 shows examples of the extracted 542

reference flows from seven known cryptojacking websites. 543

2) DETECTING CRYPTOJACKING WEBSITES 544

Finally, CIRCUIT detects cryptojacking websites using 545

extracted cryptomining reference flows. To confirm that a 546

target website contains cryptojacking, we extract all reference 547

flows from the target website and compare every extracted 548

reference flow to the indexed cryptomining reference flows. 549

Here, we employ an edit distance algorithm [17] and calculate 550

the edit distance between all the reference flows obtained 551

from the target website and all the indexed cryptomining 552

reference flows. If any pair shows an edit distance below 553

the predefined threshold (we set 5 as the threshold; see 554

Section IV-A), CIRCUIT identifies the target website as a 555

95362 VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

cryptojacking website. The algorithm that detects cryptojack-556

ing websites is presented in Algorithm 1.557

Algorithm 1: Algorithm for Detecting cryptojacking
Sites
Input: K, T
// K: known cryptojacking websites,
T: a target website
Output: C
// C: a list of cryptojacking
injected websites

1 procedure DetectingCryptojacking
(
K, T

)
2 C← ∅
3 SK← ExtractingSignature(K)

// A unique set of reference flows
of K

4 for Ti in T do
5 ST← ExtractingSignature(Ti)

// A unique set of reference
flows of T

6 if ST == false then
7 continue

8 for t in ST do
9 for k in SK do
10 if IsSimilar(t, k) then

// Determining Ti as the
cryptojacking website

11 C.append(Ti)

12 return C

13 procedure ExtractingSignature
(
S
)

14 if IsWebWorker(S) then
15 R← ∅ // R: Reference flows
16 H← takeHeapSnapshot(S)

// Take a heap snapshot for
website

17 startNode, workerNode, NodeEdgeList←
MemoryHeapGeneration(heap)
// Extract reference flow by
searching the nodes with DFS

18 R.append(extractReferenceFlows(startNode,
workerNode, NodeEdgeList))

19 return R

20 else
21 return false

IV. EVALUATIONS AND FINDINGS558

In this section, we evaluate CIRCUIT. We first evaluated559

the cryptojacking detection results of CIRCUIT using popu-560

lar real-world websites. CIRCUIT was tested for its coping561

ability with techniques used to evade cryptojacking detec-562

tion (e.g., obfuscation). Finally, we introduced findings on563

TABLE 2. Summary of the collected websites for our experiment.

the detected cryptojacking websites. We ran CIRCUIT on 564

a machine with Ubuntu 18.04 LTS, 3.8 GHz AMD Ryzen 565

processor, 32 GB RAM, and 1 TB SSD. 566

Dataset Collection: The experiment collected real-world 567

websites from the dataset. Specifically, we decided to collect 568

popular websites that have greater impacts on several users, 569

and then confirmed the existence of cryptojacking websites. 570

We collected 300,000 websites listed in Amazon’s Alexa top 571

website service [7] and Majestic [28], which provide the 572

world’s most popular website list for free, and then gathered 573

top websites in both lists to confirm the distribution of cryp- 574

tojacking in the overall Internet environment. Furthermore, 575

to identify the website service field where cryptojacking is 576

distributed, we also collected an additional Alexa category 577

top service [8] that indexes websites by category. We col- 578

lected a list of 6,000 websites, each with 500 of the most 579

popular rankings for 12 categories. Therefore, we collected 580

306,000 websites as our dataset to evaluate CIRCUIT (see 581

Table 2). 582

Memory Heap Collection: We developed a crawler that 583

stores the memory heap area of a visited website using 584

the remote interface [13] and puppeteer [27] functions of 585

the Chrome browser [12]. This crawler visited the collected 586

306,000 websites, and after waiting for the website content 587

to finish loading (i.e., load event), it extracted a snapshot of 588

the memory heap area of the JavaScript engine. Here, if the 589

connection time of the website exceeds 30,000 ms or the 590

website cannot be accessed from the domain name system 591

(DNS) server, the crawler ignores the website. Therefore, our 592

crawler collected memory heap areas from 204,773 websites 593

to evaluate CIRCUIT, and the results are summarized in 594

Table 3. 595

A. DETECTION OF CRYPTOJACKING IN THE REAL-WORLD 596

WEBSITES 597

1) METHODOLOGY 598

First, we extracted seven reference flows from the 599

seven known cryptojacking websites as signatures for 600

VOLUME 10, 2022 95363

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

TABLE 3. Summary of the collected memory heap from the website
dataset.

FIGURE 7. Distribution of the cryptojacking websites detected by CIRCUIT.

cryptojacking behaviors (see Figure 6). Thereafter, from601

the 204,733 heap graphs generated for common websites602

(Table 3), we extracted 49,791 reference flows related to web603

workers. The number of reference flows related to web work-604

ers is significantly below the number of heap graphs because605

we ignored websites that only executed a single-thread (see606

Section III). We then compared the extracted reference flows607

to the stored cryptojacking signatures by employing the608

Python library to obtain the edit distance between the two609

reference flows. Specifically, we used thenetworkx library,610

which contains the ‘‘similarity.optimize_graph_611

edit_distance’’ function that measures the difference612

between two graphs as an integer greater than or equal to613

zero; if the distance is zero, the two input graphs are the same.614

Hence, we set the threshold to 5 (defined in Section III-C)615

and determined two graphs (i.e., two reference flows) with616

an edit distance of below 5 as similar. We decided that617

the target website that contains a similar reference flow to618

cryptojacking signatures was the cryptojacking website.619

2) DETECTION RESULTS620

In our experiments, we found that 2,423 reference flows621

from 1,813 websites are similar to cryptojacking signatures.622

Figure 7 presents the distribution of cryptojacking websites623

detected by CIRCUIT; note that several websites belong to624

multiple groups. From the results, we confirmed the follow-625

ing three observations.626

1) Most detected cryptojacking websites (1,802 websites)627

belong to the Majestic top 200K group.628

2) When comparing the results of Alexa top 100K and629

Majestic top 200K, less popular websites (top 101K to630

200K) may contain more cryptojacking behaviors than 631

very popular ones (top 1 to 100K). 632

3) Cryptojacking websites were hardly discovered in the 633

Alexa category top groups (top 500 per each category). 634

Since all detected websites contain a reference flow sim- 635

ilar to that of cryptojacking websites, the detected websites 636

contain the cryptojacking behaviors, either potentially or 637

directly. Manually inspecting all the detected websites is an 638

error-prone and burdensome task, and thus, we randomly 639

selected 100 websites (6%) and manually checked whether 640

they performed cryptojacking. To verify our results, as most 641

of cryptojacking websites leverage evasion techniques to 642

hide cryptojacking behaviors, we checked the CPU usage of 643

websites, an evaluation method that was used in the existing 644

approaches [35], [38], [42]; since we have already confirmed 645

that the websites detected by CIRCUIT contain cryptojack- 646

ing signatures, we decided that it was valid to verify them 647

by further investigating the CPU usage. As a result, all the 648

100 selected websites exhibited over 55% CPU usage; 25 out 649

of the 100 websites showed over 90% CPU usage. The CPU 650

usage of the verified websites was significantly higher than 651

that of the normal websites; the normal websites exhibited 652

below 1% CPU usage on average. This result affirmed that 653

CIRCUIT successfully detected malicious websites that were 654

actually running cryptojacking behaviors. 655

The main advantage of CIRCUIT is that it has reported 656

fewer false positives. In existing approaches (e.g., Out- 657

guard [41]), for example, if the number of threads on a 658

website is greater than the threshold, or if the resource con- 659

sumption is higher than the threshold, all of them are deter- 660

mined as cryptojacking websites. Although these websites 661

may use the resources of visitors, some of them ask for 662

the consent of the visitor, and most of them have a lower 663

influence on visitors than cryptojacking websites in terms of 664

resource consumption. Thus, we can argue that our result is 665

more precise and compact because CIRCUIT detects only 666

cryptojacking websites that clearly contain the cryptojacking 667

behavior. 668

B. EVASION TECHNIQUES 669

As cryptojacking websites were blocked by the emer- 670

gence of several applications, such as Dr.Mine [16] and 671

MinerBlock [25], attackers started hiding the mining script 672

code to avoid cryptojacking detection. Therefore, we gath- 673

ered the evasion techniques found in our experiment and 674

summarized them as the following four evasion models (E1 675

to E4). Figure 8 shows the heap graphs for each evasion 676

technique. 677

1) E1: OBFUSCATING THE SCRIPT CODE 678

Obfuscation is obfuscating and compressing cryptojacking 679

script codes on a website, or to hide notable keywords in the 680

script code using the CharCode or eval function. This is 681

one of the representative evasion techniques used to avoid 682

cryptojacking detection, which makes it difficult to detect 683

95364 VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

FIGURE 8. Illustrations of heap graphs that change by various evasion techniques. In (c), the same reference flow (i.e., thread #0) as in (a) remains
identical even if the evasion technique is applied, thus, the edit distance between the two reference flows is zero. For (b) and (d), changes occurred
one by one at the node and edge of the mining reference flow, respectively, but the edit distance between mining thread #0 in (a) and mining thread
‘‘0’’ in both of (b) and (d) is exceedingly small (the measured edit distance is 2). Note that the evasion technique for modifying the external server link
does not affect the original heap graph.

Listing 5. Example code for obfuscating the script code.

Listing 6. Example code for modifying external server link.

cryptojacking using a static analysis technique [39], [43].684

An instance of code obfuscation is presented in Listing 5, and685

the entire heap graph of the corresponding code is presented686

in Figure 8 (b).687

Blacklisting based approaches, particularly when utiliz-688

ing the script code of cryptojacking as a blacklist, may689

fail to detect code-obfuscated cryptojacking websites. Since690

CIRCUIT leverages memory heap information rather than691

script code, we can detect cryptojacking websites regardless692

of script code obfuscation.693

2) E2: MODIFYING EXTERNAL SERVER LINK694

This technique bypasses cryptojacking detection by changing695

the link to load the cryptojacking script code to a random696

value. In extreme cases, the external server link provided by697

the cryptojacking vendor is first fetched by the attackers and698

stored in their web server, and then the cryptojacking code699

is loaded on its own. Here, detection is bypassed by chang-700

ing the name of the script file containing the cryptojacking701

script code to a generic name such as ‘‘jquery.js’’ or702

‘‘analysis.js’’, as described in the below sample code703

(Listing 6).704

Since the memory heap of the script code was not modified705

by this technique, the detection mechanism of CIRCUIT was706

not affected by this evasion method.707

3) E3: LIMITING RESOURCE USAGE708

To disguise a cryptojacking website as a normal website,709

attackers sometimes limit the computing resource usage dur-710

ing cryptocurrency mining, e.g., by reducing the number of711

Listing 7. Example code for limiting resource usage.

Listing 8. Example code for utilizing a separate window.

mining threads. This technique does not change significantly 712

in mining script code, but it is an option that is often utilized 713

to bypass the detectionmethod based on resource monitoring. 714

For instance, attackers can leverage this technique by adding 715

the following simple option (i.e., throttle) to their script 716

code: 717

Here, detection methods based on resource monitoring 718

and thread counts may fail to detect cryptojacking websites. 719

However, even if the number of mining threads decreases, 720

the behavior of existing reference flows is maintained (e.g., 721

mining thread #0 in Figure 8 (c)); therefore, CIRCUIT can 722

precisely detect these kinds of cryptojacking websites. 723

4) E4: UTILIZING A SEPARATE WINDOW 724

Cryptojacking websites bypass detection by embedding a 725

separate cryptojacking code, such as iframe, on the web- 726

site, allowing cryptomining without a specific script code. 727

In addition, by applying obfuscation to the embedded cryp- 728

tojacking code, cryptojacking detection becomes more diffi- 729

cult. The sample code is presented in Listing 8. 730

However, as shown in Figure 8 (d), only the start node of 731

the reference flow is replaced with another object, and there is 732

no change in the internal behavior. Therefore, CIRCUIT can 733

detect cryptojacking websites even if this evasion technique 734

is applied. 735

C. DISTRIBUTION OF WEBSITES WITH WEB WORKERS 736

As previously explained in Section II-B, some of the recent 737

approaches to detect cryptojacking have focused on the fact 738

that cryptojacking websites run several threads. AI learn- 739

ing using this indicator effectively detects cryptojacking 740

VOLUME 10, 2022 95365

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

FIGURE 9. Illustration of the proportion of multi-threaded websites
(a) and the distribution of the number of web workers in multi-threaded
websites (b).

websites, but several normal websites using multiple web741

workers have also been mistakenly detected as cryptojacking742

websites. Therefore, we checked the number of web workers743

on these websites.744

Consequently, 11,898 websites out of the total of 204,773745

websites were using at least one web worker (i.e., running746

multiple threads). Figure 9 (a) shows that websites that use747

web workers accounts for only 6% of the total collected748

websites. In addition, Figure 9 (b) shows the distribution of749

the number of web workers in multi-threaded websites, and it750

is observed that a website uses at least one to a maximum of751

57 web workers, with an average of 1.4 web workers. Thread752

count-based approaches consider the number of web workers753

(number of threads) as an indicator; if at least three web754

workers are included, then we identify a website as a cryp-755

tojacking website. Among the 11,898 multi-threaded web-756

sites, 413 websites used three or more web workers (3.6%).757

When we additionally checked all 413 websites manually,758

websites that were not injected cryptojacking included multi-759

media processing or functions, such as Google reCAPTCHA,760

by web workers. In summary, the difference in the number761

of web workers shows the effect of significantly reducing762

the scope range in the overall scale when detecting crypto-763

jacking websites. However, for precise detection, the number764

of web workers cannot be an absolute indicator. Therefore,765

a more mature approach, such as CIRCUIT, which performs766

behavior-based detection of cryptojacking through memory767

heap analysis, is efficient from this perspective.768

D. WEBSITES WITH MULTI-SERVICES769

To evaluate the effectiveness of CIRCUIT on a website that770

provides multiple services using different web workers, we771

examined websites that use multiple web workers. However,772

in our collected dataset, no website was found to simultane-773

ously provide cryptojacking behavior and normal services;774

this implies that a website generally uses multiple web work-775

ers for the same service or only one web worker.776

Therefore, for evaluation purpose, we intentionally777

inserted cryptomining code into a website that uses a normal778

web worker service to create a complex structured website779

that runs multiple web workers in parallel. The cryptomin-780

ing script code was injected at the client level using the781

developer tool provided by the browser; this does not affect782

the web server. Figure 10 shows the generated heap graph783

focusing on the identified reference flow after injecting the 784

cryptomining code of CoinIMP into the ‘‘057.ua’’ website, 785

which uses a web worker intentionally. In the heap graph, 786

a web worker created using Google’s reCAPTCHA and a 787

web worker for cryptomining exist simultaneously, together 788

with seven other web workers, as shown in Figure 10. In this 789

example, the existing resource monitoring-based approach 790

or thread count-based approach determines that this website 791

runs cryptojacking before inserting the cryptomining code. 792

In addition, if we obfuscate the cryptomining code and insert 793

it into a website, blacklisting-based approaches fail to detect 794

this website as a cryptojacking website. 795

By contrast, since CIRCUIT considers an individual refer- 796

ence flow for eachwebworker, it can detect only webworkers 797

related to cryptojacking, even in a complex structure. When 798

similarity was measured based on the reference flow of Coin- 799

IMP, the reference flow of the web worker used in Google’s 800

reCAPTCHA showed an edit distance of 11.0, whereas the 801

injected cryptomining reference flow showed an edit distance 802

of 2.0. This is not a characteristic of Google reCAPTCHA. 803

For instance, when we measured the similarity between ref- 804

erence flows of ‘‘Video.js’’ [23], ‘‘hls.js’’ [18], and 805

‘‘vectortaillay.js’’ [11], which are generally exe- 806

cuted by various web workers, and the reference flows of 807

CoinIMP, the edit distances were obtained as 13.0, 18.0, 808

and 32.0, respectively. In conclusion, CIRCUIT can precisely 809

detect only web workers related to cryptomining, even on 810

websites with multiple web workers. 811

V. DISCUSSION 812

Here we discuss several considerations related to CIRCUIT. 813

A. CRYPTOJACKING DETECTION BASED ON THE 814

JAVASCRIPT MEMORY HEAP 815

Handling relatively heavy tasks in a web environment was 816

challenging before the introduction of web workers. The dis- 817

tinction between cryptojacking and normal websites became 818

ambiguous after introducing web workers; hence, methods 819

for detecting cryptojacking websites are required. In addition, 820

cryptojacking websites attempt to avoid detection through 821

various evasion techniques. Therefore, we focused on how to 822

flexibly cope with technologies to avoid detection and how to 823

precisely detect cryptojacking websites. If the memory area 824

allocated to the website is used, the detection ability will 825

not be affected unless the evasion technique directly affects 826

memory. CIRCUIT reduced false positives in cryptojacking 827

detection and showed robust results compared with the exist- 828

ing detection methods. In addition, the analysis results of the 829

evasion techniques and distribution of web workers in the 830

overall web environment proved the necessity and efficiency 831

of approaching memory rather than simply depending on 832

the script code, resource consumption monitoring, or several 833

threads. The detection method using this memory area can 834

flexibly cope with detection bypass technologies, which hin- 835

der cryptojacking detection, and will become an important 836

insight for detection methods focusing on accuracy. 837

95366 VOLUME 10, 2022

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

FIGURE 10. Example of a website heap graph that operates multiple services including cryptomining.

B. LIMITATIONS838

As CIRCUIT detects cryptojacking websites based on the839

JavaScript memory heap, it can flexibly cope with detection840

bypass techniques that do not directly affect the memory841

heap. However, in some cases, CIRCUIT can report false842

alarms.843

• Object encapsulation. Mining-related objects can be844

abnormally encapsulated; thus, the reference flow can845

be extremely long in terms of memory, resulting in an846

extensive editing distance whenmeasuring the similarity847

between reference flows.848

• Extremely short reference flow. If the reference flow849

for a web worker is extremely short, the edit distance850

between two reference flows with different behaviors851

can be measured as a very small integer.852

A specific reference flow of a web worker found at the853

site1 had only three nodes and two edges. If an exceedingly854

short cryptojacking reference flow is added later, it can lead to855

false positives. Furthermore, we confirmed that the reference856

flow of a web worker generated at the site 2 has 41 nodes and857

40 edges. If the reference flow containing the cryptojacking858

behavior becomes long because of abnormal encapsulation,859

this can lead to false negatives. In addition, the detection of860

a new cryptojacking code, i.e., unknown cryptojacking, is861

outside the detection range of CIRCUIT. We are fully aware862

of this problem, and as a possible solution, we considered863

taint analysis using the data flow of the SITE-KEY. How-864

ever, we do not have a clear solution as yet; hence we leave865

this as future work. Finally, CIRCUIT cannot be used to866

detect Wasm-based cryptojacking websites. Thus far, it has867

been difficult to understand the memory structure of the web868

assembly, thus making the direct application of CIRCUIT869

challenging. However, if sufficient information about the870

memory structure is provided, the same CIRCUIT algorithm871

used in JavaScript can be applied to the web assembly.872

VI. CONCLUSION873

Increasing cryptocurrency values have led to an increase in874

cryptojacking, which utilizes mining maliciously. Therefore,875

we propose CIRCUIT, a precise approach for detecting cryp-876

tojacking websites based on the JavaScript memory heap.877

1https://www.acs.org/
2https://www.chestnet.org/

We define a reference flow, which can represent script code 878

behavior for each thread on a website and utilize the refer- 879

ence flow to detect websites with cryptojacking behaviors. 880

CIRCUIT successfully detected 1,813 cryptojacking web- 881

sites from 300K real-world websites. We demonstrated the 882

efficacy of CIRCUIT by (1) precisely detecting cryptojacking 883

websites using evasion techniques and (2) clearly distinguish- 884

ing normal websites with similar characteristics to crypto- 885

jacking websites. In addition, the model of evasion tech- 886

niques that we discovered and the distribution of web workers 887

within a website can provide new insights for cryptojacking 888

detection. 889

REFERENCES 890

[1] (2016). The Wrapper Object. [Online]. Available: https:// 891

javascriptrefined.io/the-wrapper-object-400311b29151 892

[2] (2017). Execution Context, Scope Chain and Javascript Internals. 893

[Online]. Available: https://medium.com/@happymishra66/execution- 894

context-in-javascript-319dd72e8e2c 895

[3] (2018). The Javascript Runtime Environment. [Online]. Available: 896

https://medium.com/olinations/the-javascript-runtime-environment- 897

d58fa2e60dd0 898

[4] (2018).UK ICO, USCourts.gov. . . Thousands of Websites Hijacked by Hid- 899

den Crypto-Mining Code After Popular Plugin Pwned. [Online]. Available: 900

https://www.theregister.com/2018/02/11/browsealoud_compromised_ 901

coinhive/ 902

[5] (2019). McAfee Labs Threats Report. [Online]. Available: https://www. 903

mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug- 904

2019.pdf 905

[6] (2019). What are Primitive and Reference Types in JavaScript? 906

[Online]. Available: https://itnext.io/javascript-interview-prep-primitive- 907

vs-reference-types-62eef165bec8 908

[7] (2020). Alexa the Top Sites on the Web. [Online]. Available: https://www. 909

alexa.com/topsites 910

[8] (2020). Alexa the Top Sites on the Web by Category. [Online]. Available: 911

https://www.alexa.com/topsites/category 912

[9] (2021). Developer Survey. [Online]. Available: https://insights. 913

stackoverflow.com/survey/2021 914

[10] (2022). About JavaScript. [Online]. Available: https://developer. 915

mozilla.org/en-U.S./docs/Web/JavaScript/About_JavaScript 916

[11] (2022). ArcGIS API for JavaScript, Class: VectorTileLayer. [Online]. 917

Available: https://developers.arcgis.com/javascript/3 918

[12] (2022). Chrome. [Online]. Available: https://www.google.com/intl/ 919

en/chrome/ 920

[13] (2022). Chrome Remote Interface. [Online]. Available: https://github.com/ 921

cyrus-and/chrome-remote-interface 922

[14] (2022). CoinBlockerLists. [Online]. Available: https://zerodot1. 923

gitlab.io/CoinBlockerListsWeb 924

[15] (2022). Concurrency Model and the Event Loop. [Online]. Available: 925

https://developer.mozilla.org/en-U.S./docs/Web/JavaScript/EventLoop 926

[16] (2022). Dr. Mine. [Online]. Available: https://github.com/ 927

1lastBr3ath/drmine 928

[17] (2022). Edit Distance. [Online]. Available: https://en.wikipedia. 929

org/wiki/Edit_distance 930

VOLUME 10, 2022 95367

H. Hong et al.: CIRCUIT: A JS Memory Heap-Based Approach for Precisely Detecting Cryptojacking Websites

[18] (2022). Hls.Js. [Online]. Available: https://github.com/video-dev/hls.js931

[19] (2022). How JavaScriptWorks: An Overview of JavaScript Engine, Heap,932

and Call Stack. [Online]. Available: https://dev.to/bipinrajbhar/how-933

javascript-works-under-the-hood-an-overview-of-javascript-engine-heap-934

and-call-stack-1j5o935

[20] (2022). Inheritance and the Prototype Chain. [Online]. Available:936

https://developer.mozilla.org/en-U.S./docs/Web/JavaScript/Inheritance_937

and_the_prototype_chain938

[21] (2022). Javascript—A Prototype Based Language. [Online]. Available:939

https://en.wikipedia.org/wiki/JavaScript_engine940

[22] (2022). JavaScript Engine. [Online]. Available: https://medium.com/@941

theflyingmantis/javascript-a-prototype-based-language-7e814cc7ae0b942

[23] (2022). Make Your Player Yours With the World’s Most Popu-943

lar Open Source HTML5 Player Framework. [Online]. Available:944

https://videojs.com945

[24] (2022). Memory Management. [Online]. Available: https://developer.946

mozilla.org/en-U.S./docs/Web/JavaScript/Memory_Management947

[25] (2022). MinerBlock Github. [Online]. Available: https://github.948

com/xd4rker/MinerBlock949

[26] (2022). Object-Oriented Programming. [Online]. Available: https://en.950

wikipedia.org/wiki/Object-oriented_programming951

[27] (2022). Puppeteer. [Online]. Available: https://github.com/952

puppeteer/puppeteer953

[28] (2022). The Majestic Million. [Online]. Available: https://majestic.954

com/reports/majestic-million955

[29] (2022). Visualizing Memory Management in V8 Engine956

(JavaScript, NodeJS, Deno, WebAssembly). [Online]. Available:957

https://deepu.tech/memory-management-in-v8958

[30] (2022). Web Workers. [Online]. Available: https://www.w3.org/959

TR/workers/960

[31] (2022). Web Workers API. [Online]. Available: https://developer.mozilla.961

org/en-U.S./docs/Web/API/Web_Workers_API962

[32] (2022). WebAssembly. [Online]. Available: https://developer.963

mozilla.org/en-U.S./docs/WebAssembly964

[33] (2022).What is JavaScript? [Online]. Available: https://developer.mozilla.965

org/en-U.S./docs/Learn/JavaScript/First_steps/What_is_JavaScript966

[34] (2022). Window: Load Event. [Online]. Available: https://developer.967

mozilla.org/en-U.S./docs/Web/API/Window/load_event968

[35] W. Bian, W. Meng, and M. Zhang, ‘‘MineThrottle: Defending against969

wasm in-browser cryptojacking,’’ in Proc. Web Conf., Apr. 2020,970

pp. 3112–3118.971

[36] H. L. Bijmans, T. M. Booij, and C. Doerr, ‘‘Inadvertently making cyber972

criminals rich: A comprehensive study of cryptojacking campaigns at973

internet scale,’’ in Proc. 28th USENIX Secur. Symp., 2019, pp. 1627–1644.974

[37] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, ‘‘A first look at975

browser-based cryptojacking,’’ in Proc. IEEE Eur. Symp. Secur. Privacy976

Workshops (EuroSPW), Apr. 2018, pp. 58–66.977

[38] G. Hong, Z. Yang, S. Yang, L. Zhang, Y. Nan, Z. Zhang,M.Yang, Y. Zhang,978

Z. Qian, and H. Duan, ‘‘How you get shot in the back: A systematical979

study about cryptojacking in the real world,’’ in Proc. ACM SIGSAC Conf.980

Comput. Commun. Secur., Oct. 2018, pp. 1701–1713.981

[39] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,982

‘‘Revolver: An automated approach to the detection of evasive web-based983

malware,’’ in Proc. 22nd USENIX Secur. Symp., 2013, pp. 637–652.984

[40] C. Kelton, A. Balasubramanian, R. Raghavendra, and M. Srivatsa,985

‘‘Browser-based deep behavioral detection of web cryptomining with coin-986

spy,’’ in Proc. Workshop Meas., Attacks, Defenses Web, 2020, pp. 1–12.987

[41] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,988

M. Antonakakis, and M. Bailey, ‘‘Outguard: Detecting in-browser covert989

cryptocurrency mining in the wild,’’ in Proc. World Wide Web Conf., 2019,990

pp. 840–852.991

[42] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos,992

and G. Vigna, ‘‘MineSweeper: An in-depth look into drive-by cryptocur-993

rency mining and its defense,’’ in Proc. ACM SIGSAC Conf. Comput.994

Commun. Secur., Oct. 2018, pp. 1714–1730.995

[43] A. Moser, C. Kruegel, and E. Kirda, ‘‘Limits of static analysis for malware996

detection,’’ in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),997

Dec. 2007, pp. 421–430.998

[44] M. Musch, C. Wressnegger, M. Johns, and K. Rieck, ‘‘New kid on the999

web: A study on the prevalence of webassembly in the wild,’’ in Proc.1000

Int. Conf. Detection Intrusions Malware, Vulnerability Assessment. Cham,1001

Switzerland: Springer, 2019, pp. 23–42.1002

[45] J. Rüth, T. Zimmermann, K. Wolsing, and O. Hohlfeld, ‘‘Digging into 1003

browser-based crypto mining,’’ in Proc. Internet Meas. Conf., 2018, 1004

pp. 70–76. 1005

HYUNJI HONG received the B.S. degree in com- 1006

puter science and engineering from Hanshin Uni- 1007

versity, Gyeonggi-do, South Korea, in 2020. She 1008

is currently pursuing the M.S. degree with the 1009

Department of Computer Science and Engineer- 1010

ing, Korea University, Seoul, South Korea. Her 1011

research interests include software security, vul- 1012

nerability detection, and vulnerability analysis. 1013

SEUNGHOON WOO received the B.S., M.S., 1014

and Ph.D. degrees in computer science and engi- 1015

neering from Korea University. He is currently the 1016

Research Professor with the Center for Software 1017

Security and Assurance (CSSA), Korea Univer- 1018

sity, and the Chief Scientist of Labrador Labora- 1019

tories Inc. He has published papers on software 1020

security and software engineering in top confer- 1021

ences, such as S&P, USENIX security, and ICSE. 1022

His research interests include software security, 1023

vulnerability detection, and software composition analysis. 1024

SUNGHAN PARK received the M.S. degree from 1025

the Department of Computer Science and Engi- 1026

neering, Korea University, Seoul, South Korea, 1027

in 2021. His research interests include web secu- 1028

rity, software analysis, and malware detection. 1029

JEONGWOOK LEE is currently pursuing the 1030

bachelor’s degree in computer science and engi- 1031

neering with Korea University, Seoul, South 1032

Korea. His research interests include vulnerabil- 1033

ity detection, malware detection, and vulnerability 1034

analysis. 1035

HEEJO LEE (Member, IEEE) received the B.S., 1036

M.S., and Ph.D. degrees in computer science 1037

and engineering from POSTECH. He is cur- 1038

rently a Professor with the Department of Com- 1039

puter Science and Engineering, Korea University, 1040

and the Director of the Center for Software 1041

Security and Assurance (CSSA). Before join- 1042

ing Korea University, he worked as the CTO 1043

at AhnLab Inc., from 2001 to 2003, and as 1044

a Postdoctoral Researcher at Purdue University, 1045

from 2000 to 2001. He is an Editor of the Journal of Communications and 1046

Networks and the International Journal of Network Management. He is a 1047

Founding Member and the Co-CEO of Labrador Laboratories Inc. 1048

1049

95368 VOLUME 10, 2022

