a2 United States Patent

Lee et al.

US010778811B2

ao) Patent No.: US 10,778,811 B2
45) Date of Patent: Sep. 15, 2020

(54) PROTOCOL MODEL GENERATOR AND
MODELING METHOD THEREOF

(71) Applicant: KOREA UNIVERSITY RESEARCH
AND BUSINESS FOUNDATION,
Seoul (KR)

(72) Inventors: Heejo Lee, Seoul (KR); Choongin Lee,
Uijeongbu-si (KR); Jeong-Han Bae,
Seoul (KR)

(73) Assignee: Korea University Research and
Business Foundation, Seoul (KR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 154 days.

(21) Appl. No.: 15/955,104

(22) Filed: Apr. 17, 2018

(65) Prior Publication Data
US 2018/0309854 Al Oct. 25, 2018

(30) Foreign Application Priority Data
Apr. 25,2017 (KR) oo 10-2017-0053102
(51) Imt.CL
GO6N 20/00 (2019.01)
GO6F 8/30 (2018.01)
GO6F 15/76 (2006.01)
HO4L 29/06 (2006.01)
(Continued)
(52) US. CL
CPC ..o HO4L 69/08 (2013.01); GO6F 8/30

(2013.01); GOGF 8/425 (2013.01); GOGF
15/76 (2013.01); GO6N 20/00 (2019.01);
HO4L 29/06068 (2013.01); HO4L 29/06163
(2013.01); HO4L 63/1433 (2013.01); HO4L
69/02 (2013.01);

(Continued)

USER / 500
PASS £ 508

P&SS ANOKYMOUS /503,

U

AUTH /20

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0050915 Al* 3/2003 Allemang GOGF 16/9024
2009/0199204 Al* 82009 Frank ... GOG6F 9/54
719/313

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2006-11683 A 1/2006
KR 10-2008-0058609 A 6/2008
KR 10-2010-0073135 A 7/2010

Primary Examiner — Sargon N Nano
Assistant Examiner — Christopher B Robinson
(74) Attorney, Agent, or Firm — NSIP Law

(57) ABSTRACT

A protocol model generator according to the present disclo-
sure includes: a memory in which a protocol model gener-
ating program is stored; and a processor configured to
execute the program. Herein, upon execution of the pro-
gram, the processor extracts multiple strings from a binary
corresponding to a protocol, generates a message pool
including multiple candidate messages to be used in the
protocol corresponding to the binary on the basis of the
extracted multiple strings, and generates a protocol model
corresponding to the protocol and configured to include
nodes corresponding to the respective candidate messages
included in the message pool. Further, the candidate mes-
sages include messages generated on the basis of the strings
and response messages generated corresponding to the mes-
sages, and the protocol model is generated including one or
more nodes and transition information between the nodes.

9 Claims, 8 Drawing Sheets

AUTH 260
PARS 7 230
PASE ANONTHOUS / 230

USER 70

UBER ANDNY

QuIT
State Machine

US 10,778,811 B2

Page 2
(51) Imt. ClL
GO6F 8/41 (2018.01)
HO4L 29/08 (2006.01)
(52) US. CL
CPC ... HO04L 69/03 (2013.01); HO4L 69/18
(2013.01); HO4L 69/30 (2013.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2010/0050186 Al* 2/2010 Shimizu GO6F 11/3419
719/316
2014/0201838 Al* 7/2014 Varsanyi GOG6F 21/552
726/23

* cited by examiner

U.S. Patent Sep. 15, 2020 Sheet 1 of 8 US 10,778,811 B2

100
’//
110
/s
COMMUNICATION
MODULE 130
120 PROCESSOR
-

MEMORY

US 10,778,811 B2

Sheet 2 of 8

Sep. 15,2020

U.S. Patent

T9VSSIN TLVQIONYD
oz —
A \V4

T I
m | TIC0N SNLOVHLA |
| | | Ho10vd
B BT .\\ FINGON DHILOYHLY3
| oSS atvaow tee NS
7 TI00K INLLOYL -
, ¥ee GNYAINOD 1€¢
| -
W, 767 TINAOW DNISSI0Y-Tud
S o
0£Z

S

e, e

AdYNIE

US 10,778,811 B2

Sheet 3 of 8

Sep. 15,2020

U.S. Patent

T3C0W 1000.L04d
psoy/pbey

gsoy/ebay
ovg-—

1584/1bsy

gsau//boy zsau/zhay

csa/obay
gsay/ghay

3OYSSIN ILVCIGNYD

vz~

THE0W 10001 04d

YEET T Jscom 000108

“
H
|
H
|
i FNGOR ONISAYTI00
|
¥
3
w

£e8

ONLOATI00 31WIS
FINCOW ONIT300W

w
H
¥
H
i
;
poeEE] o
|
!
}

INA0

US 10,778,811 B2

Sheet 4 of 8

Sep. 15,2020

U.S. Patent

00¥

v DIL

US 10,778,811 B2

Sheet 5 of 8

Sep. 15,2020

U.S. Patent

BUlyORY 9218

’ 16€ / SNOWANONY 43301

VS DId

1eg 7 Lno

£08 / SNOWANONY 88Yd
£08 /7 S8vd
005 / 435N

US 10,778,811 B2

Sheet 6 of 8

Sep. 15,2020

U.S. Patent

B iave

DY S1ER

£ / SN0 i»ér{ qum
£08 / 55vd
807 7 HANY

-,

{50 7 SAGRANGNY 438

906/ B3ISH

067 7 SCORMION SSvd O hes

{87 / 58vd
008 7 WL

Hs DId

02 7/ HiW

LERH

i Ung

wmeﬁkéz,« mw ﬂ

P

60

i

¢€\

' STGHANONY SS¥d
£06./ 55vd
004 / 5350

US 10,778,811 B2

Sheet 7 of 8

Sep. 15,2020

U.S. Patent

182 / ASYd

85/ SNOMANCNY B8N 0 / BNy
005 / 438N AR A

(227 ASVd 90
£03 / SIOWANONY 55vd

£08 / 55vd

002 / HUW

175 / SHORANONY HIan
006 / 4390

(87 / 55Yd
06 / Hifw

I8 DI

At
5% 7 SRORANONY §8¥d
£05 / 55vd
—— s / 30
158/ SODWARDINY 4330

U.S. Patent Sep. 15, 2020 Sheet 8 of 8 US 10,778,811 B2

FIG. 6

(STRT)

EXTRACT MULTIPLE STRINGS FROM BINARY
CORRESPONDING 70 PROTOCOL

:

GENERATE MESSAGE POOL INGLUDING MULTIPLE
CANDIDATE MESSAGES BASED ON EXTRACTED
MULTIPLE STRINGS

’

GENERATE PROTOCOL MODEL CORRESPONDING TO
PROTOGOL AND CONFIGURED TO INGLUDE NODES
CORRESPONDING TO RESPECTIVE CANDIDATE
MESSAGES INCLUDED IN MESSAGE POOL

(END)

5600

-—S610

-~ S620

US 10,778,811 B2

1
PROTOCOL MODEL GENERATOR AND
MODELING METHOD THEREOF

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit under 35 USC 119(a)
of Korean Patent Application No. 10-2017-0053102 filed on
Apr. 25,2017, in the Korean Intellectual Property Office, the
entire disclosures of which are incorporated herein by ref-
erence for all purposes.

TECHNICAL FIELD

The present disclosure relates to a protocol model gen-
erator and a modeling method thereof.

BACKGROUND

A protocol model is generated on the basis of messages
input through a server or a client and transition information
between the messages. Further, the protocol model may be
used to analyze performance and vulnerabilities of a net-
work protocol.

According to a conventional method for generating a
protocol model, a protocol model has been generated by
analyzing a sample input value for protocol test or a trace.
The conventional method requires experts on the corre-
sponding protocol. Further, the conventional method
requires a manual operation to generate the sample input
value or generate the trace. Further, the conventional method
is difficult to have a state machine with extensive coverage
because the range of sample input or network trace input is
frequently used by humans.

PRIOR ART DOCUMENT

Korean Laid-open Publication No. 10-2008-0058609 (en-
titled “Unification-based type wireless LAN protocol analy-
sis apparatus, analysis method thereof, and practice teaching
method thereof”)

SUMMARY

In view of the foregoing, the present disclosure provides
a protocol model generator capable of automatically gener-
ating a protocol model on the basis of a message extracted
from a binary and a modeling method thereof.

However, problems to be solved by the present disclosure
are not limited to the above-described problems. There may
be other problems to be solved by the present disclosure.

According to a first aspect of the present disclosure, a
protocol model generator includes: a memory in which a
protocol model generating program is stored; and a proces-
sor configured to execute the program. Herein, upon execu-
tion of the program, the processor extracts multiple strings
from a binary corresponding to a protocol, generates a
message pool including multiple candidate messages to be
used in the protocol corresponding to the binary on the basis
of the extracted multiple strings, and generates a protocol
model corresponding to the protocol and configured to
include nodes corresponding to the respective candidate
messages included in the message pool. Further, the candi-
date messages include messages generated on the basis of
the strings and response messages generated corresponding

10

15

20

25

30

35

40

45

50

55

60

65

2

to the messages, and the protocol model is generated includ-
ing one or more nodes and transition information between
the nodes.

According to a second aspect of the present disclosure, a
modeling method of a protocol model generator includes:
extracting multiple strings to be used in a protocol from a
binary corresponding to the protocol; generating a message
pool including multiple candidate messages on the basis of
the extracted multiple strings; and generating a protocol
model corresponding to the protocol and configured to
include nodes corresponding to the respective candidate
messages included in the message pool. Herein, the candi-
date messages include messages generated on the basis of
the strings and response messages generated corresponding
to the messages, and the protocol model is generated includ-
ing one or more nodes and transition information between
the nodes.

According to the present disclosure, it is possible to
automatically generate a protocol model through a binary
corresponding to a protocol without prior knowledge of the
protocol, analysis of information about the protocol, or a test
using a sample. Further, according to the present disclosure,
it is possible to infer various protocol states and messages of
the protocol and thus possible to provide an effective test
base. Further, according to the present disclosure, it is
possible to find state machines with extensive coverage
because they are modeled and tested up to input ranges that
people do not actually use.

BRIEF DESCRIPTION OF THE DRAWINGS

In the detailed description that follows, embodiments are
described as illustrations only since various changes and
modifications will become apparent to those skilled in the art
from the following detailed description. The use of the same
reference numbers in different figures indicates similar or
identical items.

FIG. 1 is a block diagram of a protocol model generator
in accordance with various embodiments described herein.

FIG. 2 is a block diagram of a pre-processing module in
accordance with various embodiments described herein.

FIG. 3 is a block diagram of a modeling module in
accordance with various embodiments described herein.

FIG. 4 is an example diagram provided to explain a
process for optimizing a protocol model in accordance with
various embodiments described herein.

FIG. 5A to FIG. 5C are example diagrams of a protocol
model in accordance with various embodiments described
herein.

FIG. 6 is a flowchart illustrating a modeling method in a
protocol model generator in accordance with various
embodiments described herein.

DETAILED DESCRIPTION

Hereinafter, embodiments of the present disclosure will
be described in detail with reference to the accompanying
drawings so that the present disclosure may be readily
implemented by those skilled in the art. However, it is to be
noted that the present disclosure is not limited to the
embodiments but can be embodied in various other ways. In
drawings, parts irrelevant to the description are omitted for
the simplicity of explanation, and like reference numerals
denote like parts through the whole document.

Through the whole document, the term “connected to” or
“coupled to” that is used to designate a connection or
coupling of one element to another element includes both a

US 10,778,811 B2

3

case that an element is “directly connected or coupled to”
another element and a case that an element is “electronically
connected or coupled to” another element via still another
element. Further, it is to be understood that the term “com-
prises or includes” and/or “comprising or including” used in
the document means that one or more other components,
steps, operation and/or existence or addition of elements are
not excluded in addition to the described components, steps,
operation and/or elements unless context dictates otherwise.

Hereinafter, a protocol model generator 100 in accordance
with an embodiment of the present disclosure will be
described with reference to FIG. 1 to FIG. 5C.

FIG. 1 is a block diagram of the protocol model generator
100 in accordance with an embodiment of the present
disclosure.

The protocol model generator 100 may automatically
generate a protocol model which can be used to test vul-
nerabilities of a specific protocol on the basis of messages
collected from a binary. Herein, the messages may include
request messages and response messages exchanged
between a server 320 and a client 310.

The server 320 and the client 310 are distinguished from
each other on the basis of characteristics of the messages for
convenience. For example, the server 320 refers to a com-
puting device 100 that provides a service or information and
the client 310 refers to the computing device that receives
the service or information from the server 320.

Further, the server 320 or the client 310 may be a virtual
machine installed as software in the protocol model genera-
tor 100 or the separate computing device 100, but may not
be limited thereto.

In an additional embodiment, the protocol model genera-
tor 100 may be included in the server 320. For example, the
protocol model generator 100 may be installed as a virtual
machine or an application program in the server 320, but
may not be limited thereto.

Referring to FIG. 1 again, the protocol model generator
100 may include a communication module 110, a memory
120, and a processor 130.

The communication module 110 may receive messages
exchanged between the server 320 and the client 310.

The memory 120 stores a protocol model generating
program therein. The protocol model generating program
may include a pre-processing module 230 and a modeling
module.

The processor 130 may generate a message pool using the
pre-processing module 230 included in the protocol model
generating program. Further, the processor 130 may gener-
ate a protocol model using the message pool and the
modeling module. Hereinafter, a process for generating the
message pool will be described in detail with reference to
FIG. 2 and a process for modeling the protocol model will
be described in detail with reference to FIG. 3.

FIG. 2 is a block diagram of the pre-processing module
230 in accordance with an embodiment of the present
disclosure.

The pre-processing module 230 included in the protocol
model generating program may include a string extracting
module 231, a command extracting module 232, a factor
extracting module 233, and a candidate message generating
module 234.

The processor 130 may extract strings from one or more
binaries 200 through the string extracting module 231.
Herein, the binary 200 may be a system program, an
application program or a file relevant to a network, but may
not be limited thereto. For example, the binary 200 may be

10

15

20

25

30

35

40

45

50

55

60

65

4

an execution file for executing a file transfer protocol (FTP)
or a file corresponding to a transmission control protocol
(TCP).

In this case, the processor 130 may extract strings from
the binaries 200 on the basis of reverse engineering. Further,
the processor 130 may filter a string which can correspond
to a command or a factor among the extracted strings.

The processor 130 may extract a command from the
extracted strings through the command extracting module
232. In this case, the processor 130 may extract a string
matched with one or more commands included in a com-
mand database 210 as the command.

Further, the processor 130 may extract multiple factors
from the strings by matching the extracted strings with one
or more factors included in a factor database 220 through the
factor extracting module 130.

As such, the processor 130 may extract multiple com-
mands and multiple factors from multiple strings extracted
from the binaries 200. Then, the processor 130 may generate
candidate messages 240 which can be used in a protocol
corresponding to the binaries 200 by combination of the
multiple commands and the multiple factors through the
candidate message generating module 234.

FIG. 3 is a block diagram of a modeling module 330 in
accordance with an embodiment of the present disclosure.

Herein, the modeling module 330 may include a state
collecting module 331 and a protocol model generating
module 332. The protocol model generating module 332
may include a protocol model expanding module 333 and a
protocol model collapsing module 334. The modeling mod-
ule 330 may further include a message exchanging module
300.

After the processor 130 generates the message pool
including the multiple candidate messages through the pre-
processing module 230, it performs communication between
the server 320 and the client 310 through the message
exchanging module 300 using the generated candidate mes-
sages. Further, the processor 130 may receive response
messages corresponding to the candidate messages and
generate message pairs.

In this case, each message included in the message pool
may be generated corresponding to a state and transition
information about the state.

The state is generated during the communication between
the server 320 and the client 310 using the protocol, and may
include “start”, “wait”, “process”, and “complete”. Further,
the transition information refers to information required to
change a state.

For example, if the protocol is a TCP, a process “3-hand-
shake” is performed to transfer messages in order of “SYN”,
“SYNACK?”, and “ACK” between the server 320 and the
client 310. That is, a device that transfers the message
“SYN” may be changed in state to “SYN transferred” on the
basis of transition information indicating that the message
“SYN” was transferred. Further, the device waits for receiv-
ing the message “SYNACK?”. After the device receives the
message “SYNACK?”, it may transfer the message “ACK”.
In this case, the device may be changed in state to “HAND-
SHAKE completed”. Herein, the transition information may
be the receipt of the message “SYNACK” and the transfer
of the message “ACK”.

The message pair may be configured as “(message,
response message)”. Further, the message pair may be
transition information indicative of transition from a specific
state to another state. Herein, any collected message pair
may be matched with a level. In this case, the level may be

US 10,778,811 B2

5

set on the basis of a hierarchical structure of each state.
Further, the level may have an inverse relationship with a
depth of the state.

For example, a state corresponding to a first message
transferred first in an initial state may be a first level, and a
state corresponding to a second message transferred subse-
quent to the first message may be a second level.

Specifically, the processor 130 may cause the server 320
to transfer the first message to the client 310. The server 320
may transfer the first message to the client 310. The client
310 that receives the first message from the server 320 may
generate a first response message corresponding to the first
message. Then, the client 310 may transfer the first response
message to the server 320. The processor 130 may collect
the first response message from the client 310 and match the
first message with the first response message to generate a
massage pair “(first message, first response message)”.

Otherwise, the processor 130 may cause the client 310 to
transfer the second message to the server 320. The client 310
may transfer the second message to the server 320. The
server 320 that receives the second message from the client
310 may generate a second response message corresponding
to the second message. Then, the server 320 may transfer the
second response message to the client 310. The processor
130 may collect the second response message from the
server 320 and match the second message with the second
response message to generate a message pair “(second
message, second response message)”.

If a message pair is generated, the processor 130 may add
the message pair to the protocol model and perform protocol
modeling through the modeling module 330.

In this case, the protocol model may be based on a tree
data structure or a modified tree data structure included in a
node available for recursive references. Further, the protocol
model may include a node corresponding to a state and a link
generated on the basis of transition information between
states.

For example, a specific node included in the protocol
model may represent a specific state in the corresponding
protocol and a link may correspond to transition information
indicative of transition from the state to another state.

Specifically, the processor 130 may generate a protocol
model including an initial state node. Further, the processor
130 may select a first message as a first-level message.

The processor 130 may receive a first response message
corresponding to the first message from the server 320 and
the client 310 to generate a first message pair. Further, the
processor 130 may add the generated message pair to the
protocol model. In this case, since only an initial state is
included in the protocol model, the processor 130 may
generate a first node and add the first node to a level
subsequent to the initial state node in the protocol model or
replace the initial state node with the first node in order for
the protocol model to include a state corresponding to the
first message pair.

The processor 130 may select a second message corre-
sponding to a second level which is a subsequent level on the
basis of the first response message. Then, the processor 130
may receive a second response message corresponding to
the second message from the server 320 and the client 310
to generate a second message pair. The processor 130 may
compare the first node included in the protocol model with
the second message pair. In this case, if the first node is not
matched with the second message pair, the processor 130
may generate a second node corresponding to the second
message pair and add the second node as a child node of the
first node.

10

15

20

25

30

40

45

50

55

60

6

Further, if a third message is present as a second-level
message, the processor 130 may transfer the third message
to be exchanged between the server 320 and the client 310.
Further, the processor 130 may receive a third response
message corresponding to the third message to generate a
third message pair. The processor 130 may compare the first
node included in the protocol model with the third message
pair. Further, the processor 130 may compare the second
node with the third message pair.

In this case, if there is a node matched with the third
message pair, the processor 130 may not add a node for the
third message pair. However, if the first node or the second
node is not matched with the third message pair, the pro-
cessor 130 may generate a third node corresponding to the
third message pair and add the third node as a child node of
the first node. That is, the third node may be added as a
brother node of the second node.

As described above, the processor 130 may add a candi-
date message for each level corresponding to a protocol into
a protocol model.

If a protocol model for all of the candidate messages is
generated, the processor 130 may optimize the generated
protocol model. Specifically, the processor 130 may search
for the same node by comparing nodes included in the
protocol model. Herein, the same node may refer to a node
including a child node in the same state. Then, the processor
130 may optimize the protocol model to include only a
unique node by merging the same nodes.

In an additional embodiment, the processor 130 may
compare a specific node with lower-level nodes of the
specific node to search for the same node as the specific node
among the lower-level nodes of the specific node.

FIG. 4 is an example diagram provided to explain a
process for optimizing a protocol model in accordance with
an embodiment of the present disclosure.

Referring to FIG. 4A, the processor 130 may compare a
detailed model 400 corresponding to a first node and a
detailed model 410 corresponding to a second node included
in a protocol model. In this case, the detailed model 400
corresponding to the first node may include the first node as
a root node. Further, the detailed model 400 corresponding
to the first node may include the second node, a third node,
and a fourth node, which are child nodes of the first node, as
child nodes. Furthermore, the first node transfers a message
“A” and receives a message “B” for transition to the second
node. Further, the first node transfers the message “B” and
receives a message “F” for transition to the third node, and
transfers a message “C” and receives a message “G” for
transition to the fourth node.

Likewise, the detailed model 410 corresponding to the
second node may include the second node as a root node,
and may include a fifth node, a sixth node, and a seventh
node, which are child nodes of the second node, as child
nodes. Further, the second node transfers the message “A”
and receives the message “B” for transition to the fifth node.
Furthermore, the second node transfers the message “B” and
receives the message “F” for transition to the sixth node, and
transfers the message “C” and receives the message “G” for
transition to the seventh node.

As such, the processor 130 may determine that the
detailed model 400 corresponding to the first node and the
detailed model 410 corresponding to the second node are the
same nodes on the basis of the states and transition infor-
mation corresponding to the detailed model 400 and the
detailed model 410.

Referring to FIG. 4C, the processor 130 may merge the
detailed model 400 corresponding to the first node with the

US 10,778,811 B2

7

detailed model 410 corresponding to the second node.
Further, the processor 130 may convert the first node into a
node available for recursive references in consideration of a
transition state from the first node to the second node.

Further, the processor 130 may compare the third node
with the other nodes. In this case, since there is no node
matched with the third node, the processor 130 may compare
the fourth node which is a subsequent node with the other
nodes.

In this case, the detailed model 420 of the first node is
matched with a detailed model 430 of the fourth node, the
processor 130 may merge the detailed model 420 of the first
node with the detailed model 430 of the fourth node and add
transition information to the first node.

Through the above-described process, the processor 130
may optimize a protocol model on the basis of transition
information between a node and a lower-level node as
illustrated in FIG. 4F. Referring to FIG. 4F again, the
protocol model can be optimized to include only a node
whose state and transition information are unique.

FIG. 5A to FIG. 5C are example diagrams of a protocol
model in accordance with an embodiment of the present
disclosure.

Referring to FIG. 5A, the processor 130 may generate a
protocol model for a certain protocol to include a first level
and a second level. Further, the processor 130 may expand
the protocol model using a candidate message corresponding
to a third level and a candidate message corresponding to a
fourth level as shown in FIG. 5B and FIG. 5C.

Hereinafter, a modeling method in the protocol model
generator 100 in accordance with an embodiment of the
present disclosure will be described with reference to FIG.
6.

FIG. 6 is a flowchart illustrating a modeling method in the
protocol model generator 100 in accordance with an
embodiment of the present disclosure.

The protocol model generator 100 may extract multiple
strings from a binary corresponding to a protocol (S600).

Specifically, the protocol model generator 100 may
extract multiple commands from the multiple strings. Fur-
ther, the protocol model generator 100 may extract multiple
factors from the multiple strings. The protocol model gen-
erator 100 may generate multiple candidate messages on the
basis of the multiple commands and the multiple factors.

The protocol model generator 100 may generate a mes-
sage pool including multiple candidate messages on the
basis of the extracted multiple strings (S610). In this case,
the candidate messages include messages generated on the
basis of the strings and response messages generated corre-
sponding to the messages.

The protocol model generator 100 may generate a proto-
col model corresponding to the protocol and configured to
include nodes corresponding to the respective candidate
messages included in the message pool (S620). In this case,
the protocol model is generated including one or more nodes
and transition information between the nodes.

Specifically, the protocol model generator 100 may com-
pare the nodes included in the protocol model with the
respective candidate messages. Further, the protocol model
generator 100 may generate a node corresponding to each
candidate message on the basis of a result of comparison.
The protocol model generator 100 may add the generated
node to the protocol model.

Further, the protocol model generator 100 may generate a
detailed model corresponding to any one of the multiple
nodes included in the protocol model. Furthermore, the
protocol model generator 100 may select another detailed

10

15

20

25

30

35

40

45

50

55

60

65

8

model matched with the detailed model and merge them. In
this case, the detailed model may include the any one node
as a root node and may be generated including lower-level
nodes of the root node and transition information.

Meanwhile, the protocol model generator 100 may gen-
erate a message pair corresponding to each candidate mes-
sage on the basis of message exchange for each candidate
message between the server 320 and the client 310 to
generate the message pool. Herein, the message pair may
include a candidate message and a response message cor-
responding to the candidate message. Then, the protocol
model generator 100 may generate a node corresponding to
the message pair to generate a protocol model.

According to the protocol model generator 100 and the
modeling method in accordance with an embodiment of the
present disclosure, it is possible to automatically generate a
protocol model through a binary corresponding to a protocol
without prior knowledge of the protocol, analysis of infor-
mation about the protocol, or a test using a sample. Further,
according to the protocol model generator 100 and the
modeling method, it is possible to infer various protocol
states and thus possible to provide an effective test base.

The embodiment of the present disclosure can be embod-
ied in a storage medium including instruction codes execut-
able by a computer such as a program module executed by
the computer. A computer-readable medium can be any
usable medium which can be accessed by the computer and
includes all volatile/non-volatile and removable/non-remov-
able media. Further, the computer-readable medium may
include all computer storage. The computer storage medium
includes all volatile/non-volatile and removable/non-remov-
able media embodied by a certain method or technology for
storing information such as computer-readable instruction
code, a data structure, a program module or other data.

The method and system of the present disclosure have
been explained in relation to a specific embodiment, but
their components or a part or all of their operations can be
embodied by using a computer system having general-
purpose hardware architecture.

The above description of the present disclosure is pro-
vided for the purpose of illustration, and it would be
understood by a person with ordinary skill in the art that
various changes and modifications may be made without
changing technical conception and essential features of the
present disclosure. Thus, it is clear that the above-described
embodiments are illustrative in all aspects and do not limit
the present disclosure. For example, each component
described to be of a single type can be implemented in a
distributed manner. Likewise, components described to be
distributed can be implemented in a combined manner.

The scope of the present disclosure is defined by the
following claims rather than by the detailed description of
the embodiment. It shall be understood that all modifications
and embodiments conceived from the meaning and scope of
the claims and their equivalents are included in the scope of
the present disclosure.

EXPLANATION OF REFERENCE NUMERALS

100: Protocol model generator
110: Communication module
120: Memory
130: Processor

We claim:

1. A protocol model generator, which generates one or
more protocol models that are used for testing vulnerability
in the protocol model, comprising:

US 10,778,811 B2

9

a memory in which a protocol model generating program
is stored; and
a processor configured to execute the program,
wherein upon execution of the program, the processor
extracts multiple strings from a binary corresponding to
a protocol,
extracts multiple commands from the multiple strings,
extracts multiple factors from the multiple strings,
generates multiple candidate messages on the basis
of the multiple commands and the multiple factors,
generates a message pool including the multiple can-
didate messages to be used in the protocol corre-
sponding to the binary,
generates a message pair corresponding to each of the
candidate messages on the basis of message
exchange for each of the candidate messages
between a server and a client,
generates a node corresponding to the message pair,
and
generates a protocol model corresponding to the pro-
tocol and configured to include the node, and
wherein the candidate messages include messages gener-
ated on the basis of the strings and response messages
generated corresponding to the messages, the message
pair includes the candidate message and a response
message corresponding to the candidate message, and
the protocol model is generated including one or more
nodes and transition information between the nodes.
2. The protocol model generator of claim 1,
wherein the processor compares the nodes included in the
protocol model with the respective candidate messages,
generates a node corresponding to each candidate mes-
sage on the basis of a result of comparison, and adds the
generated node to the protocol model to expand the
protocol model.
3. The protocol model generator of claim 2,
wherein if there is no node matched with a first candidate
message among the one or more nodes, the processor
generates a node corresponding to the first candidate
message and adds the node to the protocol model.
4. The protocol model generator of claim 1,
wherein after the protocol model is generated, the pro-
cessor optimizes the protocol model by generating a
detailed model corresponding to any one of the mul-
tiple nodes included in the protocol model, selecting
another detailed model matched with the detailed
model, and merging the detailed model with the
matched detailed model, and
the detailed model includes the any one node as a root
node and is generated including lower-level nodes of
the root node and transition information.

5

20

30

40

45

50

10

5. The protocol model generator of claim 4,

wherein the processor selects the matched detailed model
on the basis of information about transition to the
lower-level nodes included in the detailed model.

6. A modeling method of a protocol model generator,

which generates one or more protocol models that are used
for testing vulnerability in the protocol model, comprising:

extracting multiple strings to be used in a protocol from
a binary corresponding to the protocol;

extracting multiple commands from the multiple strings;

extracting multiple factors from the multiple strings;

generating multiple candidate messages on the basis of
the multiple commands and the multiple factors;

generating a message pool including multiple candidate
messages to be used in the protocol corresponding to
the binary;

generates a message pair corresponding to each of the
candidate messages on the basis of message exchange
for each of the candidate messages between a server
and a client;

generates a node corresponding to the message pair; and

generating a protocol model corresponding to the protocol
and configured to include the node,

wherein the candidate messages include messages gener-
ated on the basis of the strings and response messages
generated corresponding to the messages,

the message pair includes the candidate message and a
response message corresponding to the candidate mes-
sage, and

the protocol model is generated including one or more
nodes and transition information between the nodes.

7. The modeling method of claim 6,

wherein the generating of the protocol model includes:

comparing the nodes included in the protocol model with
the respective candidate messages;

generating a node corresponding to each candidate mes-
sage on the basis of a result of comparison; and

adding the generated node to the protocol model to
expand the protocol model.

8. The modeling method of claim 6, further comprising:

after the generating of the protocol model,

generating a detailed model corresponding to any one of
the multiple nodes included in the protocol model; and

merging the detailed model with the matched detailed
model to optimize the protocol model,

wherein the detailed model includes the any one node as
a root node and is generated including lower-level
nodes of the root node and transition information.

9. A non-transitory computer-readable storage medium

that stores a program to perform a method of claim 6 on a
computer.

